
RPOs in Place Graphs

of Epimorphic Bigraphs with sharing ∗

W. David Frohlingsdorf

10. September 2016

Abstract

The Bigraphical Reactive System (BRS), introduced by Robin Milner, can be used
to model systems with locality and connectivity. Bigraphs with sharing is an extension
of the BRS and allows agents to share locations. This is achieved by a redefinition of
the underlying spatial model. The sharing concept is a very useful extension, because
in many systems -for example social interactions or wireless signals- the spatial location
of agents can overlap.

In his work Milner lined out why it is important to find relative pushouts (RPOs)
in order to spot possible conflicts or potential reactions. Furthermore he outlined an
algorithm to find RPOs in bigraphs. However, the algorithm can not be applied to
bigraphs with sharing due to the changed spatial model. The aim of this project was
therefore to introduce and implement an algorithm to find RPOs in the spatial model
of epimorphic bigraphs with sharing as well as proving its correctness.

∗This report is part of a 10-week summer internship at the University of Glasgow. Supervised by Dr.
Michele Sevegnani, funded by the EPSRC.

1

Contents

1 Introduction 3

2 Review of Milner’s Algorithm 3
2.1 Notation . 4
2.2 Overview - How to built an RPO . 4

2.2.1 Recall: Relative Pushout -RPO- . 4
2.3 Nodes . 4

2.3.1 Equivalence Class . 5
2.4 Interfaces . 5
2.5 Parents . 5

3 RPOs in epimorphic Bigraphs with sharing 6
3.1 Overview . 6
3.2 Notation . 6
3.3 Nodes . 6
3.4 Interface . 7

3.4.1 Discussion: Roots from ∼=-quivalence classes are unique, up to isomor-
phism . 7

3.5 Parents . 7

4 Example of working algorithm 8
4.1 Nodes . 10
4.2 Interface . 10
4.3 Parents . 10

5 Pseudo Code of algorithm 11
5.1 Arguments . 11
5.2 Data structures . 13

6 RPOs in generic Bigraphs with sharing 14

7 Conclusion 16
7.1 Discussion . 16
7.2 Future work . 16

Appendices 17

A Proof of epimorphic algorithm 17
A.1 Proof relative bound . 17

A.1.1 B relative to D . 17
A.1.2 B bound for A . 19

A.2 ∼=-quivalence classes . 20
A.2.1 Orphan sites in B . 20

A.3 Proof RPO . 20

B Additional pseudo code functions 20

C Outline of monomorphic algorithm 23

2

1 Introduction

In a more and more connected world it is important to have models which can capture
connections and positions of agents in a complex system, as well as changes based on statis-
tical methods. For this reason Robin Milner introduced the idea of bigraphs to capture the
state of a system at any given time. Moreover Milner introduced the Bigraphical Reactive
System (BRS) as well as the refinement, Stochastical Bigraphical Reactive System (SBRS),
to model bigraph system state changes based on reaction rules and in case of the SBRS also
on probabilities [2].
Bigraphs are structures which consist of nodes which may contain other nodes or sites (ab-
stracted part of the bigraph) and are themselves inside a parent node or root. Moreover,
nodes can be connected to another with hyperedges. Hence, a bigraph consists of a place
graph which captures the position of nodes, as well as a link graph which captures the
connections of the nodes. The structures used for place and link graphs are a forest and a
hypergraph respectively.
This model, however, can not capture systems with overlapping spatial positions (for exam-
ple wireless networks or the like). For this reason Michele Sevegnani introduce bigraphs with
sharing which is an improvement of the bigraphs introduced by Milner as it allows agents to
share positions [3][4]. This new property is achieved by changing the underlying place graph
from a forest to a directed acyclic graph (DAG). There is no need to change the link graph,
as the linking capacity of nodes is not affected by the change. On the downside, however,
operations on standard bigraphs can not directly be applied to bigraphs with sharing as the
underlying structure is fundamentally different. For this reason all operations have to be
redefined for bigraphs with sharing. This project was about the redefinition of one specific
operation, namely to find relative pushouts (RPOs) in place graphs of epimorphic bigraphs
with sharing. This operation is useful for finding possible conflicts of reaction rules as well
as potential reactions in the BRS.
Robin Milner lined out an algorithm to find RPOs in link and place graphs in his work.
First, we will review this algorithm in Section 2. In the next step we will introduce introduce
an algorithm to find RPOs in epimorphic place graphs with sharing in Section 3 (note that
Milner’s link graph algorithm can be used for standard as well as bigraphs with sharing the
like). In Section 4 and 5 we will respectively show an example of the working algorithm and
line out a pseudo code of the algorithm. A mathematical proof of the algorithm’s correct-
ness can be found in Appendix A During the course of this project we also implemented the
outlined pseudo code in the BigraphER tool [5] which has been invented and is maintained
by Michele Sevegnani. Finally, we will close this paper with a discussion of RPOs in general
place graphs with sharing in Section 6.

2 Review of Milner’s Algorithm

Robin Milner gives in [2](Construction 5.9) an outline of an algorithm which can be used to
find RPOs in place graphs of standard bigraphs (without sharing). In this section we will
simply review his algorithm and reword some of his formulations to improve clarity. The
reader is advised to use Figure 1 as a reference point.

3

2.1 Notation

The number of the roots of A0 and A1 (that is Ai(i = 0, 1)) are the two ordinals (natural
numbers) mi. To iterate over those roots we will use ri.
V0 and V1 denote the sets of nodes of Ai.
V2 = V0 ∩ V1 is the set of all nodes in common between A0 and A1.
We will use w to iterate over h] V2. That is, to iterate over the -shared- sites of A and
shared nodes (but obviously not the roots).
We use A(w) to denote prntA(w) that is, to receive the parent of w in A (equally D(w)).

2.2 Overview - How to built an RPO

In a concrete place graph ’PG; if there is a bound such that:
−→
A : h → −→m (span), and

−→
D : −→m → p (cospan), one can built a RPO (

−→
B : −→m → m̂,B : m̂ → p) with the following

steps.

2.2.1 Recall: Relative Pushout -RPO-

This section contains a very informal definition of an RPO.
A RPO is a relative bound plus an arrow to some bound. It therefore consists of three

arrows -pushout-. What makes the RPO special is the fact that any other relative bound
to the given bound can be ”reached” half way from the RPO with a unique arrow -j-. That
means, the RPO is the closest cut-off of the respective bound that is anyhow possible (called
a minimal bound). Therefore, it does not give anything away and no other relative bound
can cut closer to the bound, hence they can all be reached via the RPO (see Figure 1)[2, 1].

h m0

m1 m̂

k

p

A0 //

A1

��

B0

��B1 //

B

��

D0

��D1 11

K0

��

K1

$$

K

))

j

��

Figure 1: RPO for the bound
−→
A ,
−→
D consisting of bigraphs B0, B1 and B. Any other relative

bound can be reached with a unique morphism -j-.

2.3 Nodes

Let V3 be the set of nodes which are not in A0 nor in A1 and are therefore in both of Di.
In terms of nodes, the set V3 should only be added to the bigraph in the last step, that is in

4

B, to ensure a minimal bound
−→
B . The arrows Bi only add the missing nodes to bring the

bound to V0 ∪ V 1. Note that (V0 ∪ V1) ∩ V3 = ∅ are disjoint sets.

2.3.1 Equivalence Class

The equivalence class denotes the single parent site is connected to. We are particularly
interested in the equivalence class of the sites in mi which are connected to V3 or a root in
p. That means if two sites r0

∼= r1 (they belong to the same ∼=-equivalence class), then they

have the same parent in
−→
D and this parent is in V3] p.

2.4 Interfaces

Now consider the object m̂ (that is the roots in common in arrows B0 and B1). Essentially
m̂ is a subset of the roots/sites of m0 ∪m1. In particular: Take all the sites in mi which
have as their parent in Di either a node of the set V3 or a root of p (these are the ones which
can be directly mapped into m̂ as V3 is only touched in bigraph B).

Formal: m′i := {r ∈ mi|Di(r) ∈ V3] p}

Before we can decide on m̂ we need to find out how many ∼=-equivalence classes there are.
Iterate through all shared places such that w ∈ h] V2. Whenever the shared place’s parent
is a root in both bigraphs (A0(w) = r0 and A1(w) = r1), then the two roots are in the same
equivalence class which is denoted by: (0, r0) ∼= (1, r1). Now, this is in particular interesting
when r0 ∈ m′0 and r1 ∈ m′1. With this at hand we can define up to isomorphism (see also:
Discussion 3.4.1 and Proposition A.7):

m̂ := (m′0 + m′1)/ ∼=

In words, m̂ consists of all ∼=-equivalence classes of the disjoint sum m′0 + m′1, that is their
roots.
For a site r ∈ m′i we can denote its ∼=-equivalence class as î, r.

2.5 Parents

So far we have got the sites from B0 (m0) and B1 (m1), the interfaces m̂ (that is, the
common roots of B0 and B1, which are equal to the sites of B) and of course p, as well as

three sets of nodes assigned to the bigraphs
−→
B (i.e. B0, B1) and B.

What is left to do is to define parents for the sites and nodes as follows:
For B0:

For r ∈ m0 -the roots of A0-:

B0(r) :=

{
if r ∈ m′0: 0̂, r

else: D0(r)

For v ∈ V1/V2 -the missing nodes of A0-:

B0(v) :=

{
if A1(v) = r ∈ m1: 1̂, r

else: D0(r)

5

The parents of B1 are equally created with the according 0s and 1s ”flipped over”.
Finally, we can define the parents in B which simulates the common part of D0 and D1:

For r̂ ∈ m̂ -the sites of B from interface m̂-:

B(r̂) := Di(r) where î, r = r̂

For v ∈ V3:

B(v) := Di(v)

Note that in the node case i could either be 0 or 1. The result, however, is the same and
does not depend on i as B represents the common part of D0 and D1.

3 RPOs in epimorphic Bigraphs with sharing

3.1 Overview

We will now introduce an algorithm to find RPOs in epimorphic place graphs with sharing.
As proved by Szmajduch [6] it is possible to find RPOs for all epimorphic bigraphs with
sharing.
The outlined algorithm by Milner for standard bigraphs can not directly be used for bigraphs
with sharing. This is due to the fact that Milner’s algorithm is largely based on parent
relations which are ambiguous in bigraphs with sharing. Therefore we will focus on rewriting
the algorithm where this is necessary. Note that link graphs are identical in bigraphs with
and without sharing. The RPO algorithm for link graphs outlined by Milner (Construction
5.5 [2]) can therefore be directly used for link graphs of bigraphs with sharing. In this paper
we will therefore only discuss algorithms for place graphs of bigraphs with sharing. The
algorithm outlined in this section can only be used for epimorphic bigraphs with sharing,
but we will discuss the general case at the end of this paper in Section 6.

3.2 Notation

Hereinafter, we will use the notation D
{}
i (v) to denote the set of all parents of node v in Di

(to avoid confusion with Di(r) which denotes a -single- parent in standard bigraphs).
Moreover we define

M := V3] p

for convenience.
With the notation A 3 r we mean: Set A contains an r. Furthermore, we will use ı̄ to denote
the counterpart of i. Specifically, i = 0 ⇒ ı̄ = 1 and i = 1 ⇒ ı̄ = 0. With |B| we mean the
support, that is the set of nodes, in bigraph B.

3.3 Nodes

Milner’s algorithm can be used without any changes for epimorphic bigraphs with sharing
with regard to nodes as briefly outlined in section 2.3.

6

3.4 Interface

Definition 3.1. Just like in standard bigraphs the interface m̂ is a subset of the interfaces
m0∪m1. For this we first have to find the disjoint sum m′0 +m′1. We can do this by reducing
the interfaces m0 and m1. In particular, if a shared place w ∈ h] V2 has a root as parent
in one, but not both A0 and A1 (note that a node can not have more than one parent

as we are in the class of epimorphic bigraphs -S̃Pge(K)-), then we know that this root can
not be in m̂, because w has already the complete set of parents in the corresponding other
graph of A. We can therefore reduce mi by this root. Since a reduction of mi changes the
interface, we have to iterate this process until no further changes of mi have occurred. The
reduced interfaces of mi correspond to m′i.
Having the interfaces m′0 and m′1 defined, we can now continue by defining ∼=-equivalence
classes over m′i. We do so by iterating through all the shared places w ∈ h] V2. If a shared
places has a root of m′i as a parent in A0, then it must also have one in A1 (by the definition
of m′i) and those roots are furthermore ∼=-equivalent. We denote ∼=-equivalence of two roots
r0 and r1 with (0, r0) ∼= (1, r1). Roots of the same ∼=-equivalence class form the same root

in m̂ which is denoted by î, r for any root (i, r) belonging to this class. Note also that more
than two roots can belong to a ∼=-equivalence class (see example Section 4).

Formally:

m′(m) :=

if A

{}
i (w) 3 ri ∧A

{}
ı̄ (w) 63 r̄ı

|w ∈ h] V2 ∧ ri ∈ mi ∧ r̄ı ∈ mı̄ ∧ (i = 0 ∨ 1)

: m′((mi − ri) + mı̄)

else m

We denote the formal definition of interface m̂, up to isomorphism, as:

m̂ := (m′0 + m′1)/ ∼=

3.4.1 Discussion: Roots from ∼=-quivalence classes are unique, up to isomor-
phism

The order of the roots in m̂ is not of importance for the algorithm. This is because the
definition of the interfaces and the parent relation is only based on the ∼=-equivalence class
and not the concrete position of the roots in m̂. Moreover, note that the morphism of the
RPO pointing to another relative bound (which might equally be a RPO), j, can change the
order of the roots accordingly -also known as permutation-, if required. To be consistent
with Milner’s terminology we denote this property with ”up to isomorphism” which means
that the ordinal number or label assigned to each root in m̂ is not unique and therefore
freely interchangeable.
On the other hand, however, for the graphical notation it would be nice to have a root order
which guarantees maximal clarity.

3.5 Parents

The connection to the parents is fairly self-explanatory. We will first give the formal defini-
tions and then give the definition in words.

7

Definition 3.2. For r ∈ m0 -the roots of A0-:

B
{}
0 (r) :=

{
if r ∈ m′0: 0̂, r

else: ∅
] (D

{}
0 (r)/M)

For each site r ∈ m0: connect to all the parent nodes as in D0 apart from the shared
nodes V3 and also connect to a root of m̂ if r ∈ m′0.

For v ∈ V1/V2 -the missing nodes of A0-:

B
{}
0 (v) :=

{
if A

{}
1 (v) 3 r|r ∈ m1: 1̂, r

else: ∅
] (D

{}
0 (r)/M)

For each node v ∈ V1/V2: connect it to all its parents which are not in V3] p and if v had
a parent r in A1 such that r is a root, connect v also to the corresponding root in m̂ which
covers the ∼=-equivalence class 1̂, r.
The parents of B1 are equally created with the according 0s and 1s ”flipped over”.
Finally, we can define the parents in B which simulates the common part of D0 and D1:

For r̂ ∈ m̂ -the sites of B from interface m̂-:

B{}(r̂) := D
{}
i (r) ∩M where î, r = r̂

For v ∈ V3:

B{}(v) := D
{}
i (v)

4 Example of working algorithm

We will now illustrate how the introduced algorithm works with a concrete example.

0

|| �� ""

1

�� ��
V3

��

!!

V4 V5

}} ��

V6

�� ""

V7

��ww
V0

��

V1

��

V2

0 1 2

Figure 2: Complete place graph used in this example

Lets consider a bound
−→
A : h → −→m (span), and

−→
D : −→m → p (cospan) -Figure: 4 and 3-

over the place graph introduced in Figure 2. Our ultimate goal is to create a RPO for the
bound such that any other relative bound can be reached by the RPO (see Figure 1).

8

0

�� ��

��

1

��

��

V3

�� ��

V4 V6

��
0 1 2 3 4

(a) D0

0

�� ��

1

�� ��
V4 V5

����

V6

�� ��

V7

��zz
0 1 2 3

(b) D1

Figure 3

0

��

1

��

2

��

3

 ��

4

��
V5

����

V7

��||
V0

��

V1

��

V2

0 1 2

(a) A0

0

��

1

��

2

��

3

��

V3

��

��
V0

��

V1

��

V2

0 1 2

(b) A1

Figure 4

9

4.1 Nodes

Let us now define the node sets V0−3 which is straightforward.

V0 = {v0, v1, v2, v5, v7}
V1 = {v0, v1, v2, v3}
V2 = {v0, v1, v2}
V3 = {v4, v6}

The bigraph B0 will therefore consist of nodes V1/V2 = {v3} and B1 of V0/V2 = {v5, v7}.
Bigraph B consists of V3 = {v4, v6}.

4.2 Interface

We can continue by defining the interface m̂ which lies between Bi and B. For this we
first require m′0 and m′1. We do this by reducing all roots which have a shared place as
a child, and this shared place has only in one of the two As a root as a parent, from mi.
Therefore m′i is the set {1, 2, 3, 4} (root 0 is not in m0 as site 0 is not connected to a root
parent in A1) and {0, 1, 2, 3} for i = 0, 1 respectively. Whenever two roots (of m′0 and m′1)
have a child in common, they belong to the same ∼=-equivalence class. Therefore we can
determine up to isomorphism (i.e. the order is not important) the ∼=-equivalence classes for
m̂ := (m′0 + m′1)/ ∼= which are:

(1, 0)
(0, 1) ∼= (1, 1)

(0, 2)
(0, 3) ∼= (1, 2) ∼= (1, 3)

(0, 4)

With this at hand we can conclude the interfaces for the place graphs are:

BP
0 : 5→ 5

BP
1 : 4→ 5

BP : 5→ 2

4.3 Parents

All that is left to do now is to connect the places to the parents with the formulas introduced
in Section 3. Lets start with the sites in B0. Sites 1 to 4 are all in m′0 and have therefore a
corresponding ∼=-equivalence root as one of their parents. The same is the case for all four
sites of B1. Furthermore, the sites 0 and 1 of B0 as well as the sites 1, 2 and 3 of B1 are
connected to nodes, in D0 and D1 respectively, which are not in V3. Therefore, those nodes
are parents of the sites in Bi.
We continue with the nodes in B0. The node v3 has a parent in A1 which is a root. Hence,
we connect v3 to the corresponding ∼=-equivalence class root in m̂. v3 has no further parents
in D0. The nodes v5 and v7 of bigraph B1 are similar.
Eventually, we can define the parents for places in bigraph B. This process is very straight-
forward. Lets consider one concrete example: The site of the ∼=-equivalence class (0, 3) ∼=
(1, 2) ∼= (1, 3). The parents of the corresponding sites in D0 and D1 are the sets {v6},
{v5, v6, v7} and {v6, v7}. However, the intersection with M gives a distinct result, namely
{v6}. Note that the intersection with M might be the empty set (∅), in this case the site

10

0

��

��

��

1

��

��

V4 V6

��
0 1 2 3 4

(a) B

Figure 5

0

��

1

��

2

��

3

��

4

��

V3

�� ��
0 1 2 3 4

(a) B0

0

��

1

��

2

��

3

 ��

4

��
V5

�� ��

V7

��{{
0 1 2 3

(b) B1

Figure 6

becomes an orphan (for example site 0̂, 1). The parent relation of nodes in B is even simpler
and it does not matter if D0 or D1 is used as the reference point. Note that we do not
require the intersection with M for this relation, because if note v is neither in A0 nor in
A1, then it is guaranteed that all parents of v are also not in Ai and therefore automatically
in M .
The final place graphs of the bigraphs Bi and B can be seen in Figures 6 and 5 respectively.

5 Pseudo Code of algorithm

In this section we introduce the pseudo code emerging from the introduced algorithm. We
will leave parts of the code uncommented as it should be fairly self-explanatory. Further
functions which are necessary for this pseudo code are introduced in Appendix B The reader
is advised to use Section 3 as a reference. We will continue with discussing some of the
aspects introduced in the pseudo code afterwards.

5.1 Arguments

The input of the algorithm are the four epimorphic bigraphs A0, A1, D0 and D1. In
particular we make use of the notation VX which gives the set of all nodes in bigraph X as
well as prntX(v) which gives the set of parents of place v in bigraph X. Moreover we note
that an interface h is a bound over the natural numbers such that [0, h) ∈ N. The entire
algorithm is built upon those principles only.

11

Algorithm 1 RPO algorithm for epimorphic place bigraphs with sharing

1: function rpo(A0, A1, D0, D1) . Input:
−→
A : h→ mi,

−→
D : mi → p

2: VB0
:= VA1

− VA0
. Nodes

3: VB1
:= VA0

− VA1

4: VB := VD0
∩ VD1

5: . Interface
6: (red0, red1) = buildRed(A0, A1, ∅, ∅)
7: M̂ := ∅ . M̂ is a set of sets of tuples (i, r)
8: for all i = [0, 1] do
9: for all r ∈ mi do

10: if r 6∈ redi then
11: M̂+ ={(i, r)}
12: end if
13: end for
14: end for
15: . Determine ∼=-equivalence relations
16: for all w ∈ (VA0

∩ VA1
)] h do

17: if rootPrnt(w,A0, red0) = SOME r0 ∧ rootPrnt(w,A1, red1) = SOME r1 then
18: s := rootEqui(M̂, (0, r0))
19: t := rootEqui(M̂, (1, r1))
20: M̂− = s
21: M̂− = t
22: M̂+ = s ∪ t
23: end if
24: end for
25: B0 := m0 → [0, |M̂ |) ∈ N
26: B1 := m1 → [0, |M̂ |) ∈ N
27: B := [0, |M̂ |) ∈ N→ p
28:

29: m̂ :=createMappping(M̂, [0, |M̂ |) ∈ N)
30: . Parent Relations
31: for all i = [0, 1] ∧ ı̄ = [1, 0] do . B0 and B1

32: for all r ∈ mi do . Sites
33: if rootEqui(M̂, (i, r)) 6= ∅ then
34: prntBi(r) = {map(m̂,rootEqui(M̂, (i, r)))}
35: else
36: prntBi

(r) = ∅
37: end if
38: for all par ∈ prntDi

(r) do
39: if par ∈ VA0

∪ VA1
then

40: prntBi(r)+ = par
41: end if
42: end for
43: end for

12

44: for all v ∈ VAı̄
− VAi

do . Nodes
45: if rootPrnt(v,Aı̄, red̄ı) = SOME r then
46: prntBi

(v) = {map(m̂,rootEqui(M̂, (̄ı, r)))}
47: else
48: prntBi(v) = ∅
49: end if
50: for all par ∈ prntDi

(v) do
51: if par ∈ VA0

∪ VA1
then

52: prntBi
(v)+ = par

53: end if
54: end for
55: end for
56: end for
57: . B
58: for all r̂ ∈ m̂ do
59: (i, r) = takeF irst(r̂.KEY) . Take the next best site
60: prntB(r̂.ORDINAL) = ∅ . Initialize parent set
61: for all par ∈ prntDi

(r) do
62: if par ∈ (VD0

∩ VD1
)] p then

63: prntB(r̂.ORDINAL)+ = par
64: end if
65: end for
66: end for
67: for all v ∈ VD0

∩ VD1
do

68: prntB(v) = prntD0
(v)

69: end for
70: return B0, B1, B
71: end function

The algorithm returns the RPO triple (B0, B1, B).

5.2 Data structures

As previously mentioned the notation prntX(v0) is the set of all parent-nodes and -roots of
node v0 in bigraph X. If we write prntX(v0)+ = v1 we say that v1 is added to the parent
set of v0 (v1 becomes a parent of v0). For the interested reader: Note that this means
prntX+ = (v0, v1) with regard to definition 3.2.1 of source [3].
In the algorithm the set M̂ denotes a set of sets of tuples, such that each set (i.e. each
element of M̂) is one ∼=-equivalence class. We require M̂ to be dynamical as a lot of changes
are required in lines 16 to 30 (therefore we postpone the mapping). For the example in
section 4 M̂ = {{(0, 2)}, {(0, 4)}, {(1, 0)}} on line 14 and

M̂ = {{(1, 0)},
{(0, 1), (1, 1)},
{(0, 2)},

{(0, 3), (1, 2), (1, 3)},
{(0, 4)}}

13

0

�� ��
V1

��

V2

��
0 1 2

(a) D0

0

�� ��

��

V0

��

V1

��
0 1 2

(b) D1

Figure 7

0

��

1

��

2

V0

��
0

(a) A0

0

��

1

��

2

��
V2

��
0

(b) A1

Figure 8

on line 31 (note that the specific order does not matter as it is a set). Next we assign
an ordinal for each member (∼=-equivalence class) of M̂ . This could certainly be done in
different ways, however, we will use tuples such that the first field (denoted as KEY) is a
set of tuples (the members of M̂) and the second field (denoted as ORDINAL) contains a
mapping to a unique natural number. For the example in Section 4 we have therefore:

m̂ = {({(1, 0)}, 0),
({(0, 1), (1, 1)}, 1),

({(0, 2)}, 2),
({(0, 3), (1, 2), (1, 3)}, 3),

({(0, 4)}, 4)}

Note that the mapping is a bijection between the members of M̂ and the bound [0, |M̂ |) ∈ N.

6 RPOs in generic Bigraphs with sharing

As we have seen in Section 3 it is possible to reason and construct RPOs in epimorphic
bigraphs. We will now consider an example which suggests that this might not be possible
for all bigraphs. For this, consider the bound shown in figures 7 and 8.

If there exists a RPO it should clearly contain the nodes V2 and V0 in B0 and B1

respectively. Let us now consider the candidate triple shown in Figures 9 and 10 which
looks promising to be a RPO at the first glance.

14

0

��

��

V1

��
0 1 2

(a) B

Figure 9

0

��

1

��

2

��
V2

��
0 1 2

(a) B0

0

��

1

��

2

��

V0

��
0 1 2

(b) B1

Figure 10

The introduced candidate triple fulfils all criteria to be a bound for
−→
A relative to

−→
D . In

particular: B0 ◦A0 = B1 ◦A1, B ◦B0 = D0 and B ◦B1 = D1. However, as we will see the
triple Bi, B can not be a RPO as there are relative bounds which can not be reached from
the triple. For example consider the bound shown in Figure 11 with K = B.

It is fairly easy to see that a bigraph j which would fulfil the criteria j ◦B0 = K0 leads
to ⇒ j ◦B1 6= K1. And equally vice versa j′ ◦B1 = K1 ⇒ j′ ◦B0 6= K0. On the other hand
it is also not possible to find a unique morphism from Ki to Bi which proves that neither
B nor K can be a RPO.
It seems like that there is for any given bound to A relative to D another relative bound

0

��

1

��

2

��
V2

��
0 1 2

(a) B0

0

��

1

2

��

V0

��
0 1 2

(b) B1

Figure 11

15

which can not be reached from the former. We also note the interesting property: Bi ◦Ai =
Ki◦Ai∧Bi 6= Ki. The reader is advised to try her/himself further examples with the bound
−→
D ◦
−→
A and use this as a benchmark test for further studies.

With regard to the given example the most likely scenario is that from each relative bound
there is only a certain number of other relative bounds which can be reached with a unique
morphism j. However, this is only a suggestion and further research is required to properly
reason about this. A further discussion about monomorphic bigraphs can be found in
Appendix C.

7 Conclusion

7.1 Discussion

In this report we showed the construction of an algorithm to find RPOs in place graphs
of epimorphic bigraphs with sharing. Bigraphs with sharing is an extension, introduced
by Michele Sevegnani, of Robin Milner’s BRS. We briefly touched why this algorithm is
useful and sketched an overview of the broader context. We showed with an example how
the introduced algorithm works and gave an outline of a pseudo code which has been used
to implement the algorithm in the BigraphER tool. Finally, we briefly discussed RPOs in
bigraphs with sharing in general as well as in the special case of monomorphic graphs.

7.2 Future work

Further research will be needed in the field of RPOs in bigraphs with sharing in general.
In Section 6 we sketched out an example which suggests that it might not be possible to
find RPOs for all bigraphs with sharing. However, we omitted a proof or further discussion.
More work needs to be done to fully understand the problem.
A further field of research is the subcategory of monomorphic bigraphs with sharing. In
Appendix C we briefly outline a potential algorithm for finding RPOs in place graphs of
monomorphic bigraphs with sharing. However, more work is needed to assure correctness
of this algorithm as well as an implementation in the BigraphER tool.

16

Appendices

A Proof of epimorphic algorithm

In this appendix we will prove that the outlined algorithm of Section 3 is correct, in particular
that the result is indeed a RPO for the bound. First we will prove that the produced outcome

is in fact a relative bound to the bound
−→
D . Secondly, we will show that for any other relative

bound
−→
K,K there is a unique morphism j such that j ◦Bi = Ki. The reader is advised to

use Figure 1 as a reference.

A.1 Proof relative bound

To prove that
−→
B,B is in fact a relative bound to

−→
D one can simply prove B ◦Bi = Di and

B0 ◦ A0 = B1 ◦ A1. By the definition of equality of place graphs with sharing two place
graphs are equal iff their node sets are equal, their interfaces are equal and their parent
relations are equal. We will first show that these three properties hold for B ◦Bi = Di and
secondly for B0 ◦A0 = B1 ◦A1.

A.1.1 B relative to D

Nodes

Proposition A.1. The set of nodes of B ◦Bi is equal to Di.

Proof. By the construction 5.9 of source [2] which has been used in Section 3.3 we have the
following three properties.

|Di| = (Vı̄/V2)] V3 (1)

|Bi| = Vı̄/V2 (2)

|B| = V3 (3)

By the definition 3.2.2 of source [3] the composition of two bigraphs has the support |G◦F | =
VF] VG. Therefore we can change Equation 1 in the following manner.

|Di| = (Vı̄/V2)] V3

⇔ |Di| = |Bi|] |B|
⇔ |Di| = |B ◦Bi|

Interfaces

Proposition A.2. If B ◦Bi : ai → b and Di : ci → d then ai = ci and b = d.

Proof. By the definition given in Section 3.4 we note the following three properties.

Di : mi → p (4)

Bi : mi → m̂ (5)

B : m̂→ p (6)

By the definition 3.2.2 of source [3] the composition of two bigraphs, F : k → m and
G : m→ n, is equal to G ◦ F : k → n therefore

17

B ◦Bi : mi → p
As given in Equation 4.

Parent Relation

Proposition A.3. The parent relation of the composition B ◦ Bi is equal to the parent
relation of Di.

We require to note the following in order to prove Proposition A.3.

Definition A.1. All parent relations in prntDi are member of one, and only one, of these
parent relations: A place which is not in M to a parent equally not in M , a place which is
not in M to a parent which is in M and a member of M to a different member of M . We
shall denote those relations with prntPP , prntPM and prntMM respectively. Therefore:

prntDi
= prntPP

Di
] prntPM

Di
] prntMM

Di
(7)

By the definition 3.2.2 of source [3] the composition of B ◦Bi has the parent relation

prnt := prnt/B] prnt◦] prnt.Bi
(8)

To prove that Equations 7 and 8 are equal we will show that their components are equal
with the following three lemmas.

Lemma A.3.1. prntPP
Di

= prnt.Bi

Proof. By the definition given in Section 3.5 all places (sites and nodes) in Bi take over all
the parent relations of Di except of those which are in M . Therefore directly:

prntPP
Di

= prnt.Bi

Lemma A.3.2. prntPM
Di

= prnt◦

Proof. First of all, we note that for each site which has a parent relation in prntPM there is a
unique root in m̂ which will provide all connections to M (see Proposition A.7). B connects
the sites of m̂ to the corresponding members of M according to the origin of the site (i.e.
one of ∼=-equivalence sites of D. As proved in Proposition A.7 all sites in a ∼=-equivalence
class have the same parents in M). Note that if a site of m̂ does not have a parent relation
to M (even though it had the potential from the viewpoint of A), then it is an orphan in
B. Orphan sites and their relations can be discarded in the composition prnt◦. Therefore,
prnt◦ contains only relations from P to M as required.

Lemma A.3.3. prntMM
Di

= prnt/B

Proof. By the definition given in Section 3.5 all nodes in B take over all the parent relations
of Di. Moreover, by the definition in Section 3.3, B has only nodes of V3 ⊆ M Therefore
directly:

prntMM
Di

= prnt/B

18

A.1.2 B bound for A

Nodes

Proposition A.4. The set of nodes of B0 ◦A0 is equal to B1 ◦A1.

Proof. By the construction 5.9 of source [2] which has been used in Section 3.3 we have the
following three properties.

|Ai| = Vi (9)

|Bi| = Vı̄/V2 (10)

V2 = Vi ∩ Vı̄ (11)

By the definition 3.2.2 of source [3] the composition of two bigraphs has the support |G◦F | =
VF] VG. Therefore we can change the equations in the following manner.

|Bi ◦Ai| = Vi] (Vı̄/V2)
⇔ |Bi ◦Ai| = Vi] (Vı̄/(Vi ∩ Vı̄))
⇔ |Bi ◦Ai| = Vi] (Vı̄/Vi)
⇔ |Bi ◦Ai| = Vi] Vı̄

⇔ |Bi ◦Ai| = Vı̄] Vi

⇔ |Bi ◦Ai| = |Bı̄ ◦Aı̄|

Interfaces

Proposition A.5. If Bi ◦Ai : a→ b and Bı̄ ◦Aı̄ : c→ d then a = c and b = d.

Proof. By the definition given in Section 3.4 we note the following two properties.

Ai : h→ mi (12)

Bi : mi → m̂ (13)

By the definition 3.2.2 of source [3] the composition of two bigraphs, F : k → m and
G : m→ n, is equal to G ◦ F : k → n therefore directly

Bi ◦Ai : h→ m̂
As required.

Parent Relation

Proposition A.6. The parent relation of the composition Bi ◦ Ai is equal to the parent
relation of Bı̄ ◦Aı̄.

Proof. By the definition given in Section 3.5 all parent relations are directly taken from D
which is in itself a bound for A and must therefore be consistent.

19

A.2 ∼=-quivalence classes

Proposition A.7. Roots which are ∼=-equivalent have the same -if any- parents in M .
Therefore each ∼=-equivalence class denotes one unique set of parents in M .

Proof. Each shared place w ∈ h] V2 which might have a parent in M must have a root of
m′i as a parent in both A0 and A1, because by definition M is the shared part of D and can
therefore not be in A. Because we are in the category of epimorphic bigraphs, those roots

must connect to the very same nodes and roots in M as otherwise
−→
A ,
−→
D would not be a

bound. Therefore, ∼=-equivalent roots/sites have the same parents in M .

A.2.1 Orphan sites in B

It is essential to keep orphan sites in the RPO. If we would discard them it would be
possible to find other candidate triples for the RPO (with orphans), where there is no
unique epimorphic morphism j from our triple candidate (without orphans) to the one
(with orphans). Hence, it is clearly necessary to keep all possible orphans.

A.3 Proof RPO

As we have shown the triple (B0, B1, B) is indeed a relative bound for
−→
A to

−→
D . In order for

the triple to be a RPO we have to show that
−→
B is the closest cospan to span

−→
A possible and

that all three bigraphs of the triple are guaranteed to be epimorphic [6]. We will hereinafter

assume that the given bigraphs
−→
A and

−→
D are epimorphic.

Proposition A.8. The triple (B0, B1, B) is guaranteed to be epimorphic.

Proof. By the definition in Section 3.5 all roots and parent relations in B are taken from Di

and all sites from mi with a potential for being connected to a root (see Preposition A.7)
are also in B. Therefore, no root can be idle nor can there be two roots which are partners
in B. By definition, each place of Bi is connected to at most one root of m̂. Moreover,
there can not be an idle root in Bi, because each root has to be a parent of either a site or
a node.

Proposition A.9. Cospan
−→
B is the closest possible bound for span

−→
A relative to

−→
D .

Proof. By definition, |Bi| = |Aı̄|/|Ai| therefore directly |Bi ◦ Ai| = |A0| ∪ |A1| hence no
more nodes are added to the composite. Moreover, each place in A0 or A1 which has the
potential to have a parent which is not in A (i.e. the place has always a root of m′i as a
parent) has this property preserved by the definition of interface m̂. Since no more places

are added through Bi and all potential parent relations are preserved. The bound
−→
B ◦
−→
A

must therefore be the closest bound to the span
−→
A relative to

−→
D .

B Additional pseudo code functions

20

Algorithm 2 Root parent function. Gives the single root -if any- of a place

1: function rootPrnt(v, C, red) . Input: Node v, bigraph C : k → l, reduction red
2: for all p ∈ prntC(v) do
3: if p ∈ l then
4: if p ∈ red then
5: return NONE
6: else
7: return SOME p
8: end if
9: end if

10: end for
11: return NONE
12: end function

Algorithm 3 Recursive algorithm to build reduction sets

1: function buildRed(A0, A1, red0, red1) . Input: Two bigraphs, two reduction sets
2: for all w ∈ (VA0

∩ VA1
)] h do

3: if rootPrnt(w,A0, red0) = SOME r0 then
4: if rootPrnt(w,A1, red1) = NONE then
5: return buildRed(A0, A1, red0 + r0, red1)
6: end if
7: else if rootPrnt(w,A1, red1) = SOME r1 then
8: return buildRed(A0, A1, red0, red1 + r1)
9: end if

10: end for
11: return (red0, red1)
12: end function

Algorithm 4 Root equivalence function. Gives the set which contains the root

1: function rootEqui(M̂, r) . Input: Set of sets M̂ , root identifier tuple r
2: for all s ∈ M̂ do
3: if r ∈ s then
4: return s
5: end if
6: end for
7: return ∅
8: end function

Algorithm 5 Creates an injective mapping from M̂ to N

1: function createMappping(M̂,N) . Input: Set M̂ , Numbers N
2: m̂ := ∅
3: for all m ∈ M̂ ∧ n ∈ N do
4: m̂+ = (m,n)
5: end for
6: return m̂
7: end function

21

Algorithm 6 Maps a distinct set to an ordinal

1: function map(m̂, S) . Input: Set of mapping m̂, root set S
2: for all R ∈ m̂ do . R is a tuple such that (KEY, ORDINAL)
3: if R.KEY = S then
4: return R.ORDINAL
5: end if
6: end for
7: end function

Algorithm 7 Returns the first tuple found in the set

1: function takeFirst(S) . Input: Set of tuples S
2: for all s ∈ S do
3: return s
4: end for
5: end function

22

C Outline of monomorphic algorithm

In this appendix we will discuss some of the features an algorithm for monomorphic bigraphs
with sharing would need to have. In particular we will focus on the construction of the
mediating interface m̂ as all other parts should be fairly similar to the introduced algorithm
for epimorphic bigraphs with sharing. We will omit a further proof of the correctness and
further work will be needed before this algorithm can be implemented. The reader is advised
to use Figure 1 as a reference.

We note that in a monomorphic bound each site of mi has a unique parents set of
parents in M which is disjoint with all the other parent sets of mi for i = 0, 1 respectively
(that is, if sides are considered separately). Furthermore we notice that a morphism j can
always perform splits on sites, however never merges as this would violate the monomorphic
restriction (no two sites are siblings). Therefore m̂ must provide the fewest number of sites
possible.
Hereinafter we will always mean parent set of M if we talk about the parent set, unless
otherwise stated.
Let us first consider m0. As mentioned each site has its own parent set which is disjoint
with all other parent sets. We can drop all empty parent sets as it can not connect to a root
in m̂ as this root would be an idle site in B (violation of monorphism).
Let us now consider m1. Each parent set will intersect with a number of the parent sets
of m0 but never with another parent set of m1. By considering the parent sets and their
intersection we can create concrete parent sets such that each intersection of a parent set
has a unique concrete parent set. As before, we can drop all empty concrete parent sets,
in particular only intersections will be non-empty. Those concrete parent sets represent
the bare minimum of roots/sites needed for m̂. In particular we create for each concrete
parent set (i.e. each intersection) a site in m̂ and connect the site in B to the corresponding
parents of M . In B0 and B1 the sites connect to the corresponding roots such that all
concrete parent sets of the site’s parent set are connected to the site.

23

References

[1] Horst Herrlich and George E. Strecker. Category Theory. Allyn and Bacon, Inc., 1
edition, 1973.

[2] Robin Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 1 edition, 2009.

[3] Michele Sevegnani. Bigraphs with sharing and applications in wireless networks. PhD
thesis, University of Glasgow, 2012.

[4] Michele Sevegnani and Muffy Calder. Bigraphs with sharing. Theoretical Computer
Science, 577:44–73, April 2015.

[5] Michele Sevegnani and Muffy Calder. Bigrapher: rewriting and analysis engine for
bigraphs. CAV 2016, Lecture Notes in Computer Science, 9780(II):494–501, July 2016.

[6] Mariusz Szmajduch. Rpos for bigraphs with sharing. Research Report:
http://www.academia.edu/21610250/RPOs for bigraphs with sharing [Accessed on: 18
July 2016], 2015.

24

	Introduction
	Review of Milner's Algorithm
	Notation
	Overview - How to built an RPO
	Recall: Relative Pushout -RPO-

	Nodes
	Equivalence Class

	Interfaces
	Parents

	RPOs in epimorphic Bigraphs with sharing
	Overview
	Notation
	Nodes
	Interface
	Discussion: Roots from equivalence classes are unique, up to isomorphism

	Parents

	Example of working algorithm
	Nodes
	Interface
	Parents

	Pseudo Code of algorithm
	Arguments
	Data structures

	RPOs in generic Bigraphs with sharing
	Conclusion
	Discussion
	Future work

	Appendices
	Proof of epimorphic algorithm
	Proof relative bound
	B relative to D
	B bound for A

	equivalence classes
	Orphan sites in B

	Proof RPO

	Additional pseudo code functions
	Outline of monomorphic algorithm

