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ABSTRACT
The Capacitated Vehicle Routing Problem with Time Win-
dows is a very important logistic problem because our econ-
omy is becoming increasingly globally connected particularly
in the wake and rise of online trading. Nowadays customers
can order goods at any time from anywhere in the world and
the order must be delivered to the customer within days. This
trend puts significant strains on supply chains. Logistic busi-
nesses need to keep transportation costs low in order to stay
competitive. Businesses use computer models and programs
to effectively route their delivery vehicles to customers. Var-
ious approaches have been proposed and used to solve this
problem. This paper focuses on Constraint Programming
models because of their high flexibility and readability. Con-
straint Programming models can be adapted and changed
with relative ease on a day to day basis allowing businesses
to react quickly to exceptional circumstances. Furthermore,
this paper compares two different models as well as a num-
ber of search heuristics. Finally, it contains a brief survey
of the Vehicle Routing Problem in a wider context.

1. INTRODUCTION
This section contains an informal introduction to the prob-

lem and to Constraint Programming which we used to solve
the problem. We use simple and informal examples to con-
vey the key ideas.

1.1 Capacitated Vehicle Routing Problem
with Time Windows

Consider the following scenario to get an intuition for the
problem: You are the owner of a grocery store. In order
to increase your business’s competitiveness you launched an
online shopping website where your customers can place or-
ders for next day home delivery. Each customer can pick a
one hour time window for their delivery to arrive. You hired
three delivery drivers and each driver has the same vehicle
and abilities. Therefore you encounter the following prob-
lem every morning: Which driver should deliver to which
customers and in what order such that no vehicle is over-
loaded, every delivery happens in the correct time window
and the overall travelled distance is minimal (to minimise
fuel consumption)?

This problem is formally known as the Capacitated Vehicle
Routing Problem with Time Windows(CVPRTW). Section 2
contains a formal description of the problem and Section 6
presents numerous variants of the Vehicle Routing Problem
(VRP) in general.

There exists a close relation between the CVRPTW and

Figure 1: Each vehicle takes a different route

the better known Travelling Salesman Problem (TSP). In
fact, the CVRPTW is equivalent to the Capacitated Travel-
ling Salesman Problem with Time Windows if we have only
one vehicle available for the CVRPTW (one vehicle has to
visit every customer). Hence, it is clear that the CVRPTW
is as least as complex as the TSP. Since finding an opti-
mal solution for the TSP belongs to the NP-Hard problem
class, finding an optimal solution for the CVRPTW (that is,
finding the shortest combined tour for all vehicles) equally
belongs to NP-Hard.

1.2 Constraint Programming
Constraint Programming (CP) is a programming paradigm

which focuses on the declarative description of a problem
and solves the problem automatically in the background[46].
To get a better intuition of CP we will use two independent
example problems to explain how problems are modelled and
solved using CP.

Imagine you are a stone carver and you are transporting
goods from your workshop to the market where you are go-
ing to sell your goods. Because the market is many miles
away you can not afford to make multiple trips. Your goods
are very popular and from your experience you know you
will likely sell everything you take to the market. Each of
your items has a size and a market price. For example, stat-
ues might be very large but also very expensive. On the
other hand, smaller sculptures are of medium size and much
cheaper. Which items should you load into the van such
that your profit will be as large as possible but the van is
not overloaded?

Let us consider another example: Imagine you need to
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create the week rota for the night security service of a mu-
seum. Each night you need precisely one guard. A guard
must not have two or more consecutive night shifts. Each
guard must have two or three shifts per week. Your team
consists of three guards. Guard 1 can not work in the first
and second night, Guard 2 can not work in the fifth night
and Guard 3 can work any night. How do you schedule the
shifts of the guards such that all of these constraints are
satisfied?

Even though the example of the stone carver (which is a
variant of the knapsack problem[35, 10]) and the security
guard rota seem to be very different, they have many things
in common. First of all, they are both problems which re-
quire decisions to be made. In our first example we need to
decide for each item whether we are going to take it with
us to the market or leave it in the workshop. In the sec-
ond example we need to decide for each shift which guard is
scheduled to work the shift. In CP such decisions are cap-
tured in variables which are called decision variables (for
simplicity they are often referred to as “variables” only). In
our first problem we could have a decision variable for each
item signalling whether we take the item with us to the mar-
ket (true) or not (false). Such a decision variable is also
called a boolean decision variable. On the other hand, in
the second problem each decision variable can take one of
three values; that is, for each shift we need to pick one of
the three guards (formally we say that the domain of the
decision variable consists of three values). Furthermore, we
notice that both of our examples have constraints regarding
the decision variables. For instance, in the second example
the shift of the fifth night can not be assigned to the second
guard (because he is not available for this shift).

Let us now look at how one would actually model the two
examples in MiniZinc, a popular CP tool kit[37]. MiniZinc
translates the source code into a low-level CP code, called
FlatZinc, and uses a solver such as Gecode[53] to solve the
problem encoded in the model. Figure 2 shows the model of
the stone carver example.

1 set of int: ITEM = 1..3;
2
3 array[ITEM] of int: size = [1,4,3];
4 array[ITEM] of int: value = [2,3,2];
5 int: max_load = 4;
6
7 var set of ITEM: take;
8
9 constraint sum(i in take)

10 (size[i]) <= max_load;
11
12 solve maximize sum(i in take)
13 (value[i]);

Figure 2: CP - Stone Carver

Here we assume that we only have three items which we
might take to the market. In Line 1 we define a set of three
integer values (one to three) where each value represents
a specific item, in other words we label each item with a
unique number. In Line 3 and 4 we declare for each item its
size and market value. The parameters size and value are
immutable (read-only) arrays1 which take an integer of the

1Note that the smallest index of an array in MiniZinc is 1
rather than 0.

range ITEM as the index and map each integer of this range
to an integer denoting the size and the value respectively of
the corresponding item. For example, size[2] corresponds
to the size of the item which is labelled with “2” (in our
example: size[2] = 4). The parameter max_load in Line
5 defines the maximum load the van can transport. Line
7 declares our decision variable take. Rather than having
a boolean decision variable for each item, we say that we
take a subset of all our items to the market. This is equiv-
alent to having a boolean decision variable for each item
(where true would denote that the item is an element of
the subset). In this example using set notation rather than
individual boolean decision variables makes the code cleaner
and therefore more intuitive. Line 9 and 10 encode a con-
straint. Particularly, the sum of the sizes of all items that
we take to the market must not exceed the maximum load
of the van. Finally, Line 12 and 13 declare the objective,
namely the sum of the values of all items that we take to
the market should be maximised (that is, the profit should
be as large as possible).

Figure 3 shows the output of the stone carver model. By
default MiniZinc shows only the values of the decision vari-
ables (in our case take, Line 3), however, the user might
declare a more informative and richer custom output. We
see that for our model we should take items one and three
to the market (which give us a combined profit of four and
a combined size of four which is equivalent to the maximum
load of the van). Line 5 denotes that this solution is optimal.
In other words, there is no other valid solution which gives
a greater profit. A solution is called valid iff all constraints
are satisfied (for example taking items one, two and three is
not a valid solution because their combined size exceeds the
maximum load of the van. Therefore the constraint in Line
9 and 10 is not satisfied).

1 Compiling stone_carver.mzn
2 Running stone_carver.mzn
3 take = {1,3};
4 ----------
5 ==========
6 Finished in 161 msec

Figure 3: CP - Stone Carver Output

1 include "globals.mzn";
2 set of int: GUARD = 1..3;
3 set of int: NIGHT = 1..7;
4
5 array[NIGHT] of var GUARD: rota;
6
7 constraint forall(n in 1..6)
8 (rota[n] !=
9 rota[n+1]);

10 constraint global_cardinality_low_up(
11 rota ,
12 [g | g in GUARD],
13 [2 | g in GUARD],
14 [3 | g in GUARD]);
15 constraint rota [1] != 1;
16 constraint rota [2] != 1;
17 constraint rota [5] != 2;
18
19 solve satisfy;

Figure 4: CP - Security Guard Rota
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Figure 4 shows the MiniZinc model of the guard rota.
Line 2 defines the set of guards and Line 3 the set of nights
(where nights are labelled from one to seven inclusive). Line
5 defines the decision variable rota, namely for each night
we have to pick precisely one guard. Lines 7 to 9 define
that for all nights (except for the very last one) the guard
scheduled to work during this night has to be different than
the guard scheduled for the next night. We have to exclude
the seventh night from this constraint because it does not
have a successive night as it is the last night (if we include it,
it would cause an out of bounds error). Lines 10 to 14 make
sure that each guard is scheduled for two or three night
shifts. The constraint says that each guard (Line 12) has
to appear at least twice (Line 13) and at most three times
(Line 14) in the decision variable array rota (Line 11). The
number of occurrences of a constant in a decision variable
array is called the cardinality. Cardinality constraints are
not natively supported by MiniZinc but are included in the
standard library which is loaded into the model in Line 1.
Lines 15 and 16 define that Guard 1 can not be assigned
to work in the first and second night respectively (because
he is unavailable). Equally, Line 17 defines that the shift
in the fifth night can not be assigned to Guard 2. Finally,
Line 19 asks to solve the problem such that all constraints
are satisfied.

The result of running MiniZinc on the rota model can
be seen in Figure 5. A valid (but not necessarily unique
solution) is the rota shown in Line 3 of the output. Other
than in the previous example we do not wish to optimise our
rota in any way, we simply require a valid rota.

1 Compiling rota.mzn
2 Running rota.mzn
3 rota = array1d (1..7 ,[3, 2, 3, 2, 1, 2,

1]);
4 ----------
5 Finished in 222 msec

Figure 5: CP - Security Guard Rota Output

1.2.1 Decision vs. Optimisation Problem
In the first example we try to maximise our profit. When-

ever, we are maximising or minimising a number (in this
case the sum of the values of the items which we take to the
market, i.e. the profit) we call the problem an optimisation
problem. While solving an optimisation problem we might
find incrementally better solutions. For instance, MiniZinc
might first explore subsets with only a single element, that
is, we only take one item to the market. This might give
us valid solutions which are not optimal yet (the profit is
not maximal). Finding the optimal solution can often take
a very long time. Therefore, optimisation problems are usu-
ally solved with a time limit. If the optimal solution can
not be found within the limit, the best solution found so far
is reported instead (which is often reasonably close to the
optimal solution).

The second problem, on the other hand, is a decision prob-
lem (which belongs to the class of Constraint Satisfaction
Problems, CSP). That is, the first valid solution that MiniZ-
inc encounters is reported. Another way to look at decision
problems is to think of them as yes or no questions (hence,
decisions). Particularly: Is there at least one solution such
that all the constraints are satisfied? There can only be two

answers to this question, namely: “No there is no solution”
or “Yes and here is the solution I found” (where the actual
solution might not be unique).

Conceptually, decision and optimisation problems are very
different. However, it is easy to show that optimisation prob-
lems can be built using iterative decision problems. To go
back to our first example, we might first ask: ”Is there a so-
lution such that we load the van with some of our items and
go to the market without overloading the van?”. This is a
decision problem so it might give us an answer such as: take
= {1}; (with a profit of two). In the next iteration we would
ask the same question and add the additional constraint that
the profit must be larger than two. We repeat this process
until no better solution can be found (that is, the decision
problem becomes unsatisfiable). We can also approach this
problem the other way round, namely we first ask whether
there is a valid solution such that the profit is bigger or equal
to seven (using seven as the upper bound because it is the
combined value of all items that we own). As long as the
decision problem is unsatisfiable we keep decrementing the
profit constraint (that is, in the second iteration we would
ask for solutions with a profit of at least six and so on). The
value of the optimal solution is called the critical number
(sometimes also crossover point). In our small example the
critical number, that is the profit, is equal to four.

Numerous previous (empirical) studies have shown that
the computational complexity of a decision problem increases
as we approach the critical number (in other words, the diffi-
culty peaks at the critical number)[6, 15, 8, 16, 17, 41]. This
phenomena is called the phase transition. Figure 6 shows a
schema of the phase transition2. As a rule of thumb we can
say that it is easy to find a valid solution for an optimisation
problem but it becomes increasingly harder to improve the
best found solution so far (as we are ”climbing” towards the
peak).

Figure 6: Phase Transition - Schema

Clearly, the CVRPTW is an optimisation problem be-
cause we wish to minimise the total distance travelled by
all vehicles combined. Because of the phase transition phe-
nomena it can be expected that finding the optimal solution

2Note that this schema corresponds to a minimisation prob-
lem. A maximisation problem, such as the stone carver ex-
ample, would have the labels ”Unsatisfiable” and ”Satisfi-
able” swapped.
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for an instance of the CVRPTW is very difficult. It is there-
fore reasonable to aim to find a solution which is fairly close
to the optimal solution within a time limit instead. In re-
ality it is often more economical to use a reasonably good
solution (for example, within 5% of the optimal solution) in-
stead of waiting for hours, days or weeks in order to obtain
the optimal solution or investing into additional computa-
tional power to speed up the solving process. Therefore, our
work aims to produce reasonably good solutions within a
short time but optimality is not strictly required.

1.2.2 Symmetry Breaking
Often entities in a model are interchangeable. Let us re-

vise our security guard rota example and imagine all three
guards are available on all nights (this corresponds to delet-
ing Lines 15 to 17 in the model shown in Figure 4). In this
case the work schedule for Guard 1 would equally work for
Guards 2 and 3. Another way to think about this is: any two
guards could swap their schedule and all constraints would
still be satisfied. This is called a symmetry. Symmetric so-
lutions might slow the solving process down substantially.
This is because symmetric solutions (regardless of whether
they are valid or invalid) are explored multiple times. Con-
cretely, if we have three symmetric values which have to fill
three slots, and each slot has to have a different value, we
can choose from three values in the first slot, two in the sec-
ond slot and one in the last slot (3×2×1 = 3! = 6). Clearly
symmetries create a huge overhead and should be avoided.
Symmetries can be avoided by adding additional constraint
which force the symmetric values to take a certain order,
this is called symmetry breaking. Typically, lexicographi-
cal ordering or value proceed chains are used for symmetry
breaking. In the security guard rota we might use a value
proceed chain over the rota decision variable array. That
means, the first shift of a guard must be before the first shift
of the guard’s successor (where the successor is the guard
with the next highest number; for instance, Guard 3 is the
successor of Guard 2). In other words, the first shift must
be assigned to Guard 1, the second shift must be assigned
to Guard 1 or 2, the third shift must be assigned to Guard
1 or 2 or, if the second shift was assigned to Guard 2, 3.

While symmetry breaking can speed up the solving pro-
cess significantly, it can also break a correct model if it is
not implemented correctly. Therefore, symmetry breaking
should only be added to the model once we are sure that the
model works correctly.

1.2.3 Backtracking and Search Heuristics
Typically a CP solver uses a backtracking algorithm to

reach a valid solution. In particular, it takes the first deci-
sion variable which has not been instantiated (no value has
been assigned to it yet), it instantiates the variable with
the first value of the variable’s domain and reduces the do-
mains of all remaining non-instantiated decision variables
using constraint propagation. Constraint propagation en-
forces that all domains of the remaining decision variables
only contain values that do not conflict with the newly in-
stantiated value of the current variable.

For example, let us consider two decision variables var

1..3: a; and var 1..3: b; (both with the initial do-
main {1, 2, 3}) as well as a constraint to say that a must
be different than b (constraint a != b;). The solver takes
the first non-instantiated variable and assigns it to the first

value of its domain, that is a = 1. Now b’s domain can be
reduced to {2, 3} because value 1 can not satisfy the con-
straint a != b.

If during constraint propagation a domain becomes empty
(called a domain wipeout), we trigger a backtrack. That
means, we will try the next value of our current variable
instead. If we run out of values for our current variable we
will try the next value of the previously instantiated decision
variable and so on. This way we explore all possible solutions
and are guaranteed to find a solution if there is one (this is
called a complete search). Moreover, because of constraint
propagation, it is guaranteed that a found solution is valid.
This property is called soundness.

The backtracking search strategy might not always work
well because a difficult variable might be instantiated later
than an easy variable (there is no general definition of what
difficult and easy variables are; typically however, a difficult
variable causes many backtracks because it can only take few
values in a valid solution). Therefore, to reduce the num-
ber of backtrack calls, we want to instantiate more difficult
variables before easier variables. Moreover, we might prefer
some values in the domain over others (particularly if we
know more about the nature of the problem). CP tool kits
allow us to customise the order that variables are picked
for instantiation and the order that values of the domain
are chosen for instantiation. This is called variable ordering
heuristic and value ordering heuristic respectively. If the
order can change while the solver is running we also call it
a dynamic ordering heuristic.

Choosing the right heuristics can speed up the solving pro-
cess by an order of magnitude or more (equally, a badly cho-
sen heuristic can slow the process down). Typically, heuris-
tics are merely rules of thumb and have to be empirically
evaluated. However, a common variable ordering heuristic
which often leads to a significant speedup is the “Smallest
Domain” variable ordering heuristic where the variable with
the fewest remaining values in the domain is chosen for in-
stantiation. Such standard heuristics are supported by most
CP solvers and can often be added by changing a single line
of code. Some tool kits such as Choco[42] also allow cus-
tom heuristics where the programmer can code their own
heuristic.

2. PROBLEM DESCRIPTION
The previous section informally described the CVRPTW

as well as CP. This section firstly argues why the CVRPTW
is an important problem. Secondly, it gives a brief yet formal
definition of the CVRPTW which will be used for the rest of
this paper. This formal definition of the problem is loosely
based on the work by Kallehauge, Larsen and Madsen[26].

2.1 Importance
The transportation of goods is a major factor in the eco-

nomic world and often accounts for 10% to 20% of the gross
national product of a country[13]. In previous decades the
trend of globalisation and online trading has put further
strains on the transportation sector[24]. Routing efficiently
a fleet of vehicles over a given set of customers with addi-
tional time and capacity constraints is often the very essence
of a successful logistic business. Improving supply chains can
substantially help to reduce production costs and increase
profit. Clearly even small improvements in the transporta-
tion sector can have a significant impact at a national level
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and improve prosperity.

2.2 Formal definition
A set of n customers has to be served by a set of m vehi-

cles. Customer i has a specific demand for goods ri and the
sum of demands served by a single vehicle must not exceed
the vehicle capacity Q. We only consider a homogeneous
fleet of vehicles which means that each vehicle has the same
capacity. cij is the cost/distance to travel from location i
to location j. τij is the time to travel from i to j, for sim-
plicity we assume that the travel time is equivalent to the
distance τij = cij . Each customer i has a time window in
which service has to commence [ai, bi]. Equally, the depot
has a time window [ai, bi] which denotes the earliest and
latest time a vehicle can leave and return respectively. si is
the time needed to serve customer i. ti corresponds to the
time that service commences at customer i. The depot is
represented twice: location 0 corresponds to the depot for
leaving vehicles, location n + 1 is the depot for returning
vehicles. xijk is equal to 1 if vehicle k travels directly from
location i to location j, 0 otherwise. Below, Table 1 lists all
necessary variables for the formal definition.

Table 1: Formal definition variables
n Number of customers

C = {1..n} Set of customers
N = C ∪ {0, n+ 1} Set of customers and depot

m Number of vehicles
M = {1..m} Set of vehicles

cij = τij i, j ∈ N Cost/time to travel from i to j
ri i ∈ C Demand of customer i

Q Vehicle capacity
ai i ∈ N Earliest time i can be served
bi i ∈ N Latest time i can be served
xijk = {0, 1}

Vehicle k travels from i to j
i, j ∈ Nk ∈M
si i ∈ N Service duration at i
ti i ∈ N Service start time at i

Objective:

minimise
∑
k∈M

∑
i∈N

∑
j∈N

cijxijk (2.1)

Subject to: ∑
i∈N

∑
k∈M

xijk = 1 ∀j ∈ C (2.2)

∑
j∈N

∑
k∈M

xijk = 1 ∀i ∈ C (2.3)

∑
j∈N

∑
k∈M

x0jk = m (2.4)

∑
i∈N

∑
k∈M

xi(n+1)k = m (2.5)

∑
i∈C

∑
j∈N

xijkri ≤ Q ∀k ∈M (2.6)

(ti + si + τij)xijk ≤ tjxijk ∀i, j ∈ N ∀k ∈M (2.7)

s0 = sn+1 = 0 (2.8)

ai ≤ ti ≤ bi (2.9)

The objective and the constraints above have the following
meanings:

• (2.1) The objective of the problem is to minimise the
sum of the cost of all used routes by all vehicles.

• (2.2) For every customer j, there must be precisely one
vehicle k which goes to j from an arbitrary location i.

• (2.3) For every customer i, there must be precisely one
vehicle k which leaves i to go to an arbitrary location
j.

• (2.4) There are precisely m routes leaving the depot at
location 0 and go to an arbitrary location j. Unused
vehicles “go” directly from the depot at location 0 to
the depot at location n+ 1

• (2.5) There are precisely m routes which go to the de-
pot at location n+1 coming from an arbitrary location
i.

• (2.6) For every vehicle k: The sum of all demands of
customers visited by k must not exceed the vehicle
capacity Q.

• (2.7) For all locations and vehicles: If vehicle k goes
from location i to location j then the leaving time from
location i (which corresponds to the service start time
plus the service duration) plus the time to travel from
i to j is the earliest time that service can begin at
location j.

• (2.8) There is no service time associated with the de-
pot.

• (2.9) Service at location i has to commence within the
time window.

3. KEY IDEAS
We developed two models for the CVRPTW. The first

model is loosely based on models discussed in the literature
(see also Section 6). The second model, on the other hand,
exploits the fact that we are considering a homogeneous ve-
hicle fleet (all vehicles are equivalent). This section presents
the two models using a concrete example and high-level de-
scriptions of how the two models work.

3.1 Example Problem
We will explain the two models using an example with

five customers (n = 5), a single depot (denoted with n+ 1)
and a fleet of five vehicles (m = 5) each with a capacity of
five units (Q = 5). In particular, we will use the solution
shown in Figure 7 to exemplify how the two models work.
Note that only three of the five vehicles are used in this
particular solution.
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Figure 7: Customers and depot

Table 2: Distance matrix
1 2 3 4 5 6

1 0 4 2 4 4 3
2 4 0 5 1 5 1
3 2 5 0 4 5 4
4 4 1 4 0 5 2
5 4 5 5 5 0 5
6 3 1 4 2 5 0

The solution shown in Figure 7 is valid, however, not nec-
essarily optimal in the sense that there might be solutions
with a shorter total distance. The total distance is the path
length of all vehicle routes summed up using the distance
matrix shown in Table 2. In our example the total dis-
tance is equal to 28 where the respective routes are of length

eight (6
|3|−→ 1

|4|−→ 2
|1|−→ 6), eight (6

|4|−→ 3
|4|−→ 6) and 12

(6
|5|−→ 5

|5|−→ 4
|2|−→ 6) where the numbers above the arrows

denote the distance between the locations.

Table 3: Demand
Customer 1 2 3 4 5
Demand 2 3 3 1 4

The sum of the customer demand (as given in Table 3)
along a vehicle route must not exceed the vehicle capacity
of five. In our example the summed demands along the three
vehicle routes are equal to five (6→ 1[2] → 2[3] → 6), three
(6 → 3[3] → 6) and five (6 → 5[4] → 4[1] → 6) where the
subscripts denote the customer’s demand.

Table 4: Time Windows
Location 1 2 3 4 5 6
Earliest 5 5 5 10 5 0
Latest 50 45 50 55 45 80

Table 5: Service
Customer 1 2 3 4 5

Service time 3 6 2 1 3

Finally, each customer has a time window as shown in
Table 4 in which service has to commence. Furthermore,
the time window of the depot denotes the earliest leaving
and latest returning time for all vehicles. For simplicity
(and by convention) vehicles need one time unit to travel

one distance unit (for example, a vehicle needs four time
units to travel from Customer 1 to 4). Vehicles may arrive
before the time window but need to wait until the earliest
time of the time window to commence service. Servicing a
customer takes as many time units as specified in Table 5.
If we assume that each vehicle always leaves every customer
as soon as possible, the three vehicles would have a schedule
as shown in Table 6. Note that any schedule is valid as
long as the “Start service” entries lie within the customer’s
time window and the vehicle’s “Leave depot” and “Finish” is
within the time window of the depot ([0,80]).

Table 6: Possible schedules
6→ 1→ 2→ 6 6→ 3→ 6 6→ 5→ 4→ 6
0 Leave depot 0 Leave depot 0 Leave depot
3 Arrive at 1 4 Arrive at 3 5 Arrive at 5
5 Start service 5 Start service 5 Start service
8 Leave 1 7 Leave 3 8 Leave 5

12 Arrive at 2 11 Finish 13 Arrive at 4
12 Start service 13 Start service
18 Leave 2 14 Leave 4
19 Finish 16 Finish

3.2 Model 1
Model 1 has an array of decision variables for each vehicle

which represents the route of the vehicle. The routes of all
vehicles are saved in a single m× (n+ 1) matrix called succ
(short for successor). Table 7 shows the successor matrix
which corresponds to our example from Figure 7 (i.e. with
instantiated decision variables).

Table 7: succ matrix
HHH

HHHH
Vehicle

Location
1 2 3 4 5 6

1 2 6 3 4 5 1
2 1 2 6 4 5 3
3 1 2 3 6 4 5
4 1 2 3 4 5 6
5 1 2 3 4 5 6

The first row of Table 7 shows the route of the first ve-
hicle. Each column in a row represents a location (cus-
tomer/depot) and the cell denotes which location is visited
next (hence the name, successor). Cells where the cell con-
tent matches the cell’s column denote a non-visit (for ex-
ample, succ[2][4] = 4 means that Vehicle 2 does not visit
Location 4). Therefore, the route of vehicle 1 goes from the
depot (6) to Customer 1, to Customer 2 and back to the
depot (6). Customers 3, 4 and 5 are not visited by Vehicle
1 as the according cells match with their columns.

We constrain that each vehicle which does not leave the
depot, that is the cell in column 6 is equal to 6, must not
visit any customer (so every other cell in this row must be
equal to its column too). In our example Vehicles 4 and 5 do
not leave the depot. Moreover, each customer (1..n) must be
visited precisely once. We enforce this by constraining that
for each column i (except for column n+ 1 which represents
the depot) there are exactly m−1 cells in this column which
take the value i leaving room for one row (that is, vehicle)
to take a different value. Finally, we constrain that each
row corresponds to the subtour constraint[4] meaning that
all visited customers should build a single, circular tour.
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Since we have a homogeneous fleet, we need to perform
symmetry breaking (i.e. it does not matter which vehicle
drives which route). We can perform symmetry breaking
over the succ matrix by lexicographically ordering the rows
in a decreasing order. That means, each row forms a num-
ber and this number has to be greater or equal than the
number of the next row. Concretely, in our example symme-
try breaking holds because: 263451 ≥ 126453 ≥ 123645 ≥
123456 ≥ 123456.

The number of used vehicles corresponds to the number of
rows in succ where the last column (i.e. the depot column)
is not equal to n+1 (see 3.1). That means each vehicle that
leaves the depot is a used vehicle.

#vehicles =

m∑
i=1

{
1, if succ[i, (n+ 1)] 6= n+ 1

0, otherwise
(3.1)

The total distance travelled can be easily calculated by
summing up all distances from all cells to their successors
for each row in succ (see 3.2). Each non-visited customer
contributes 0 to the sum because distance[i, i] = 0 ∀i ∈
1..n+ 1.

total distance =

m∑
i=1

n+1∑
j=1

distance[j, succ[i, j]] (3.2)

For each vehicle we propagate the load constraint by cal-
culating the demand of each vehicle route and limiting this
route demand to be no bigger than the vehicle capacity. The
route demand corresponds to the sum of all demands of cus-
tomers along a vehicle route (see 3.3).

capacity ≥
n∑

j=1

{
demand[j], if succ[i, j] 6= j

0, otherwise
∀i ∈ 1..m

(3.3)
The time constraint is encoded with an additional decision

variable array, arrive, which denotes the arrival time of the
serving vehicle for each location. The arrival time has to lie
within the time window so that service can commence im-
mediately (see 3.4). How can we propagate the arrival times
along vehicle routes? Let s be the successor of customer c
(that means, on a vehicle route s is visited immediately af-
ter c). Therefore, the arrival time of s is equivalent to the
leaving time of c plus the time to travel from c to s. We
know the time to travel from c to s from the distance ma-
trix and the leaving time of customer c is the arrival time at
c plus the service time (arrive[c]+service[c]). If the vehicle
arrives too early at s (that is, before service can commence)
it is forced to take longer for the drive and hence to arrive
later at s (see 3.5). Every customer must be left on time
such that there is enough time to return to the depot be-
fore it closes (see 3.6). For (3.5) we require the leaving time
from the depot (which should be equivalent to the earliest
possible leaving time) so that we can define the arrival time
of the first customer of each route. As previously shown,
the leaving time of a location is the arrival time plus the
service time. Therefore, we set the “arrival” time at the de-
pot to the opening time of the depot and declare that the
depot’s service time is equal to 0 (see 3.7). Note that the
arrival time can also be used for subtour elimination similar
to Model 2.

earliest[i] ≤ arrive[i] ≤ latest[i] ∀i ∈ 1..n+ 1 (3.4)

succ[i, j] 6=n+ 1 ∧ succ[i, j] 6= i→
arrive[succ[i, j]] = max(arrive[j] + service[j]+

distance[j, succ[i, j]], earliest[succ[i, j]])

∀i ∈1..m, j ∈ 1..n+ 1

(3.5)

arrive[i] + service[i]+

distance[i, n+ 1] ≤ latest[n+ 1] ∀i ∈ 1..n
(3.6)

arrive[n+ 1] = earliest[n+ 1] ∧ service[n+ 1] = 0 (3.7)

3.3 Model 2
Model 2 takes advantage of the fact that we only consider

a homogeneous fleet. For this reason, the notion of assigning
a customer to an actual vehicle route is completely circum-
vented. Instead, we have only one decision variable array,
pred (for predecessor), which denotes for each customer c its
predecessor p (the vehicle which visits p, visits c immediately
afterwards) and a second boolean decision variable array,
last, which denotes for each customer whether the visiting
vehicle returns to the depot afterwards (this customer is the
last on the route). Finally, the boolean decision variable ar-
ray is pred indicates whether a customer is a predecessor of
another customer. is pred is the inverse of last because a
customer c can only be a predecessor of another customer iff
the visiting vehicle does not return to the depot after visit-
ing c and vice versa. is pred is only needed for convenience
in the constraints. Table 8 shows the instantiated decision
variables for the solution shown in Figure 7.

A vehicle route can be derived in reverse order using pred
and last. For example, we know that each route ends at
the depot (6), then we look for a customer which is the
last customer on its route such as Customer 2 (6 ← 2), the
predecessor of Customer 2 is Customer 1 so we can add 1 to
the route (6 ← 2 ← 1), finally the predecessor of Customer
1 is the depot so we have finished the route (6 ← 2 ← 1 ←
6 = 6→ 1→ 2→ 6).

Table 8: pred, last and is pred decision variable arrays
Customer 1 2 3 4 5
pred 6 1 6 5 6
last 0 1 1 1 0

is pred 1 0 0 0 1

Arguably, having a decision variable array for customer
predecessors is less intuitive than an array of customer suc-
cessors. However, using predecessors rather than successors
allow the capacity and timing constraints to be much shorter
and concise.

The number of used vehicles corresponds to the number
of vehicles returning to the depot (see 3.8).

#vehicles =

n∑
i=1

last[i] (3.8)

If a customer i is a predecessor of another customer
(is pred[i] = 1) then i has to occur in pred exactly once. For
example, Customer 1 is the predecessor of another customer
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(is pred[1] = 1) meaning there must be exactly one entry in
pred which takes the value 1 (in our example: pred[2] = 1).

Furthermore, each used vehicle must leave the depot. That
means there must be #vehicles customers with the depot
as the predecessor. In other words, there must be exactly
#vehicles entries in pred with the value n + 1. In our ex-
ample there are three used vehicles (=

∑
last) which means

there must be exactly three customers with the depot as
the predecessor (pred[1] = 6, pred[3] = 6 and pred[5] = 6).
We can use the cardinality constraint, which was introduced
in Subsection 1.2, to implement these two properties as
sketched in (3.9).

card(pred, [1, 2, ..., 6], [is pred[1], ..., is pred[5],#vehicles])
(3.9)

The total distance travelled can be calculated by sum-
ming up the distance of each element in pred to the index
of the element; that is, from the predecessor to the current
customer. Moreover, we need to add the distance from the
current customer back to the depot iff the current customer
is the last one on the route (see 3.10).

total distance =

n∑
i=1

dist[pred[i], i] + dist[i, n+ 1] ∗ last[i]

(3.10)
The array load saves the current load of the visiting vehicle

when it leaves each location. Each vehicle leaves the depot
completely loaded. At each customer the vehicle’s load is
reduced by the customer’s demand (see 3.11). By restricting
the domain of load to take values between 0 and capacity
(in our example 5), we enforce the load constraint to hold.

load[i] = load[pred[i]]− demand[i] ∀i ∈ 1..n (3.11)

Moreover, the load constraint (as well as the time win-
dow constraint) eliminate subtours. Proof by contradic-
tion: Imagine a subtour between Customers 1 and 2 existed.
Therefore we have:

load[1] = load[pred[1]]− demand[1]

= load[2]− demand[1]
(3.12)

load[2] = load[pred[2]]− demand[2]

= load[1]− demand[2]
(3.13)

Now we can insert the first equation (3.12) into the second
equation (3.13) such that:

load[2] = load[1]− demand[2]

load[2] = (load[2]− demand[1])− demand[2]

⇔ 0 = −demand[1]− demand[2]

0 = demand[1] + demand[2]

(3.14)

Because we know that demands have to be positive Equa-
tion 3.14 is a contradiction (similar for the time window
constraint).

The timing constraint requires a further decision variable
array, leaving time, which, for each location, encodes the
time when the serving vehicle is departing from the loca-
tion. The leaving time from the depot is the earliest pos-
sible leaving time which corresponds to the depot opening
time. For every customer the leaving time corresponds to

the time when service is finished at the customer which is
equivalent to the service start time plus the service dura-
tion of the customer. The service start time is the time that
the serving vehicle arrived at this customer but not earlier
than the earliest time service can start (lower bound of the
customer’s time window, see 3.15).

leaving time[i] = service[i]+

max(earliest[i],

leaving time[pred[i]]+

distance[pred[i], i])

∀i ∈ 1..n

(3.15)

Eventually, service at each customer has to start before
the end of the customer’s time window (see 3.16) and the
leaving time at each customer must permit a return to the
depot before it closes (see 3.17).

leaving time[i]− service[i] ≤ latest[i] ∀i ∈ 1..n (3.16)

leaving time[i]+

distance[i, n+ 1] ≤ latest[n+ 1]

∀i ∈ 1..n

(3.17)

4. SEARCH HEURISTICS
In this section we present a number of search heuristics

which we considered to be particularly promising for the
CVRPTW. In particular, our work focused on heuristics
for a random restart strategy, called Luby search[34]. This
search strategy has been shown to be often a successful strat-
egy especially for difficult problems[20].

4.1 Luby Search
The idea behind a restart search strategy is to quickly ex-

plore various areas of the search tree. Therefore, the used
search heuristics must have a notion of randomness so that
the search takes a new path (probabilistically) with each
restart. Furthermore, the strategy needs to periodically trig-
ger a restart (that is, the search starts from the top again)
in order to prevent the search from being stuck in a local
minimum (see Figure 8, a normal backtracking algorithm
would explore the tree from left to right). After each restart
Luby Search increases the time to the next restart in a non-
linear fashion according to the Luby Sequence. The Luby
Sequence is iteratively defined: The sequence starts with 1
(base case), the existing sequence is repeated and the dou-
ble of the last number of the existing sequence is added to
the end (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, ...).
Because the Luby Sequence is gradually increasing it even-
tually exceeds the size of the search tree. Therefore, Luby
Search is a complete search strategy[34]. Moreover, we can
use no-goods recording in order to prevent the search from
exploring paths which were already explored in a previous
restart. No-goods recording has a computational and space
overhead, however, the overhead is typically acceptable for
the speed up that no-goods provide.
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Figure 8: With each restart a new random path is explored.
Note: a search tree is not a data structure but the call stack
of the recursive backtracking algorithm. Note also that the
Figure shows a binary search tree for simplicity.

To summarise, if we use Luby Search we need to use a vari-
able/value ordering heuristic with a notion of randomness.
Furthermore, we can optionally enable no-goods recording
which often speeds up the solving process.

4.2 Variable ordering heuristics
We identified the following variable ordering heuristics as

particularly promising for the CVRPTW.

• Smallest Domain The decision variable with the fewest
remaining values in its domain is chosen for instan-
tiation. This means, the most isolated or restricted
customer is chosen for instantiation.

• Farthest Nearest Neighbour For each uninstanti-
ated customer i we identify which customer j in i’s
domain is closest to i. From all customers the one
with the greatest distance to its nearest neighbour j is
chosen for instantiation.

• Random a random variable is chosen for instantia-
tion.

• Probabilistic it has been shown that bad decision
are tend to be made early in the search tree[22, 21].
The probabilistic search heuristic picks initially ran-
dom decision variable for instantiation. As more and
more decision variables are instantiated the heuristic
will start using the Farthest Nearest Neighbour heuris-
tic instead. In other words, the heuristic is a hybrid
between the Random and the Farthest Nearest Neigh-
bour heuristics where the former is more likely to be
chosen higher in the search tree and the later at deeper
depths of the search tree.

4.3 Value ordering heuristics
We identified the following value ordering heuristics as

particularly promising for the CVRPTW.

• Smallest Value Take the first value of the domain.

• Nearest Neighbour Of all neighbours in the cus-
tomer’s domain chose the neighbour which is closest
to the customer.

• Random Chose a random value of the domain.

5. EVALUATION
We evaluated various combinations of the heuristics shown

in the previous section. In this section we briefly describe
the evaluation methods and show the results of our evalua-
tion. All our evaluations were run on the Formal Analysis,

Theory and Algorithms (FATA) group cluster at the Uni-
versity of Glasgow. The cluster consists of six nodes each
with the properties shown in Table 9. Each instance of each
evaluation run was given 15 minutes on a single processor
core of the cluster. We used the Solomon Benchmark[51]
to evaluate the models and heuristics as this has been the
de-facto standard benchmark for the CVRPTW for many
years. However, we only used instances of the benchmark
for which the optimal solution is known in order to gain a
better estimate of how well each heuristic performs.

Table 9: Cluster node properties
Processor Dual Intel Xeon E5-2697A v4
Memory 512GB Ram

OS Ubuntu 17.04

Figure 9 shows the best found distance of Model 1 and
Model 2 (with both Choco and MiniZinc) plotted against
the optimal solution. The closer an instance is to the di-
agonal line the better it performed (the closer it is to the
optimal solution). Note that no instance can be below the
diagonal line as this would indicate that the model found a
solution which is better than the optimal solution (which is
impossible). In Figure 9 we only plot the results of the 25
customers instances because Model 1 was not able to find
solutions for any instances of the 50 and 100 customers in-
stances within the time limit. Both models used the “Small-
est Domain” variable ordering and “Smallest Value” value
ordering heuristics.

Figure 9: Model 1 (Choco/MiniZinc) vs Model 2
(Choco/MiniZinc)

Figure 10 and Figure 11 show the number of used vehicles
for each solved instance plotted against the number of vehi-
cles of the optimal solution for Model 1 and 2 respectively.
We note that it is often possible to find solutions which use
fewer vehicles for the cost of increasing the total combined
distance of all vehicles. It is therefore not the case that the
optimal solution uses as few vehicles as possible.

From Figure 9 we can conclude that Model 2 outperforms
Model 1 significantly (keeping in mind that Model 2 found
solutions for all instances while Model 1 only found solutions
for some instances of the 25 customers problem instances).
Moreover, we note that the Choco implementation of Model
2 performs slightly better than the MiniZinc implementa-
tion. Therefore, we used Model 2 implemented in Choco to
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evaluate all further heuristic combinations.

Figure 10: Model 1 (Choco/MiniZinc) number of vehicles

Figure 11: Model 2 (Choco/MiniZinc) number of vehicles

Figure 12: Performances of various heuristics

Figure 12 shows the performance of four different heuris-
tics plotted against the optimal solution on the x-axis. Look-
ing at the plot we can derive that the “Farthest Nearest

Neighbour Variable - Nearest Neighbour Value” and “Small-
est Domain Variable - Nearest Neighbour”heuristics outper-
form significantly the “Smallest Domain Variable - Smallest
Value” and the Luby “Random Variable - Random Value”
heuristics. In the next steps we aim to isolate the best per-
forming variable and value ordering heuristics. For this we
compare one to one the performance of two heuristics gath-
ering evidence for good and bad heuristics with each step.

Figure 13: Smallest Domain Nearest Neighbour vs Farthest
Nearest Neighbour

In Figure 12 we saw that the “Farthest Nearest Neighbour
Variable - Nearest Neighbour Value” heuristic as well as the
“Smallest Domain Variable - Nearest Neighbour” heuristic
perform very well. Figure 13 compares the two heuristics
directly to derive which one performs better. Every point
in the plot corresponds to one problem instance where the
x and y coordinates are determined by the total distance of
the corresponding heuristic. Points on the diagonal (dashed
line) correspond to instances for which both heuristics de-
termine equally good solutions (note that this might not be
the same solution). Informally: the more instances a heuris-
tic can place deep in its opponents triangle the better it
performs. Figure 13 shows that the “Smallest Domain Vari-
able - Nearest Neighbour”heuristic seems to perform slightly
better on average but the difference is not of statistical sig-
nificance.

Figure 14: Performances of probabilistic heuristic
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We developed the probabilistic variable ordering heuristic
with the aim to improve the farthest nearest neighbour vari-
able heuristic. However, Figure 14 shows that both heuris-
tics perform in fact equally well. This, as well as the find-
ings of Figure 13, lends weight to the assumption that the
“Nearest Neighbour” value ordering heuristic is of greater
importance than the variable ordering heuristic.

Figure 15: Effect of no-goods recording

Furthermore, we ran a number of experiments with Luby
Search. Firstly, we wanted to determine the computational
advantage/disadvantage of using no-goods recording. Fig-
ure 15 shows the effect of running Luby Search with (x-
axis) and without (y-axis) no-goods recording (using the
same search heuristics). The figure clearly shows that, in
our case, no-goods recording had no significant performance
impact. We decided to use no-goods recording for all further
evaluation with Luby Search because the literature reports
mostly positively of no-goods recording.

Figure 16: Luby Random Variable vs Smallest Domain
(both Random Value)

Figure 16 shows the performance of Luby Search with ran-
dom variables versus Luby Search where the variable with
the smallest domain is chosen for instantiation (both use the
“Random Value”heuristic). Both heuristics seem to perform
roughly equally well.

Finally, we compared Luby Search with “Farthest Nearest
Neighbour Variable - Random Value” against the “Farthest

Figure 17: Farthest Nearest Neighbour vs Luby Farthest
Nearest Neighbour Random Value

Nearest Neighbour Variable - Nearest Neighbour Value”heuris-
tic. The results are plotted in Figure 17 and clearly show
that the latter performs significantly better. This suggests
the importance of the “Nearest Neighbour” value ordering
heuristic.

Section 7 contains a more thorough discussion regarding
the findings presented in this section. Furthermore it consid-
ers further combinations of variable/value ordering heuris-
tics for future work. The next section contains a brief liter-
ature review and discusses related work.

6. RELATED WORK
The VRP was first formalised by Dantzig and Ramser in

1959[9] and several refinements and extensions have been
proposed since then. This section reviews a number of the
most relevant and recent related work.

6.1 Variants
Most commonly, the VRP is extended with additional

constraints to make it more applicable to real-world logistic
problems[45]. The literature considers predominantly tim-
ing and capacity constraints[29] (CVRPTW).

The timing constraint consists of an additional time ma-
trix to show the travel times between any two customers
or the depot and a customer. Typically, the time matrix is
the product of a scalar multiplication of the distance matrix.
Each customer has a time-window in which the serving vehi-
cle has to arrive. Furthermore, the depot has a time window
such that no vehicle can leave the depot before it opens and
all vehicles have to return to the depot before it shuts. This
problem class is called the Vehicle Routing Problem with
Time Windows (VRPTW)[52, 2, 3].

The second common constraint which is often added to the
VRP by default is the capacity constraint. This constraint
limits the amount of goods that each vehicle can transport
and assigns a demand for a quantity of goods to each cus-
tomer. The load of a vehicle can not be below zero or exceed
its capacity at any time. This VRP variant is called Capac-
itated Vehicle Routing Problem (CVRP) or, if in combina-
tion with the Time Window constraint, CVRPTW[29, 27,
28].

Further common constraints and variants of the VRP which
are worth being mentioned are the pickup and delivery prob-
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lem (a vehicle can deliver and collect goods from a cus-
tomer)[12, 33, 7, 44], the multiple trips variant (a vehicle
can go back to the depot to reload)[14] and goods constraints
which limit the type of goods which can be carried in the
same vehicle[43, 40].

Over the last two decades much research has been done on
the VRP and numerous extensions have been proposed and
studied. The following are some of the more significant re-
search streams. The Electric VRP composes routes for elec-
tric vehicles with a limited range and long charging times[23,
48], the Green VRP takes the environmental impact of the
routes into account[59, 54], the Resource Distribution VRP
considers the redistribution of resources amongst all nodes
(for example bike sharing stations)[49, 55], the Trailer VRP
calculates the VRP for HGVs by combining the towing ve-
hicle and the trailer[5], similarly, Lam, Van Hentenryk and
Kilby consider the independent movement of drivers and ve-
hicles[31]. The Multi-Compartment VRP considers various
compartments on each vehicle for different types of goods[11,
56]. All of these streams require novel constraints as they
can not easily be modelled with existing ones.

6.2 Alternative Solving Approaches
Various solving approaches, other than CP, have been sug-

gested and successfully applied for solving the VRP. While
most of them are not as flexible as CP we acknowledge that
many of them significantly outperform CP models (that is,
they find better solutions faster). Each solving approach
therefore has individual strengths and weaknesses.

Local Search takes an initial, non-optimal, solution and
tries to improve the solution by applying move operators
to the solution. In their influential paper “Solving Vehicle
Routing Problems Using Constraint Programming and Meta-
Heuristics” De Backer et al. propose a hybrid solver which
uses Local Search and CP[1]. Their Local Search has the
following well established move operators for the VRP:

• 2-Opt: Replace and insert two arcs in a route, all in-
termediate arcs change directions[32].

• Or-Opt: One, two or three neighbouring nodes are
moved somewhere else in the route[38, 32].

• Relocate a single node to a different route and posi-
tion[47].

• Swap two nodes in their positions[47].

• Swap the end paths of two routes[47].

De Backer et al. propose four local search strategies: Tabu
Search, Guided Local Search (in two versions) as well as a
hybrid of Tabu and Guided Local Search. Tabu Search[18,
19] aims to make “spinning” searches in a local minimum
impossible (forcing the local search to climb out of the local
minimum). When a move is performed, this specific move
is placed into a queue, called the tabu list, which has a lim-
ited length. If the tabu list is full, the move in the front
of the list is dequeued and is no longer tabu. Therefore it
is impossible to repeatedly perform the same sequence of
moves (up to the length of the tabu list). Guided Local
Search (GLS)[58] works on a similar basis. However, rather
than making specific moves tabu it penalises features of a
local minimum by augmenting the objective function such
that visiting the local minimum becomes more expensive.

Local search can be further improved by Large Neighbour-
hood Search (LNS)[50] which combines related nodes and
therefore reduces the overall search space.

Integer Programming (IP) has also been successfully
used to model and solve the VRP. An Integer Program-
ming problem is an optimisation problem in which all de-
cision variables can only take integer values. The IP variant
Mixed Integer Programming (MIP), which allows variables
to take non-integer values during the solving process but
must end up with integer variables in the optimal solution,
has been used by Kilby and Tommaso to solve a variant of
the VRP[30]. Similarly, Integer Linear Programming (ILP),
in which the objective function and the constraints have
a linear relation[39, 36] as well as Column Generation, in
which the problem is solved to optimality or near optimality
in incremental steps such that each step introduces further
decision variables[25], have both been successfully used in
the context of the VRP.

Finally, Genetic Programming (GP) is a programming
technique in which an algorithm is mutated in order to derive
new and ultimately better algorithms (this process is a type
of Evolutionary Algorithms). The set of algorithms derived
from a mutation is called a generation. Each algorithm in
a generation is tested with a fitness function (that is, the
function evaluates how well each algorithm performs) and
the fittest algorithms of a generation are selected to produce
the next generation. Recent attempts to use GP for solving
the VRP have turned out to perform particularly well[57].

7. CONCLUSION AND FUTURE WORK
Using the evaluation data shown in Section 5 we can con-

clude that Model 2 significantly outperforms Model 1. We
infer that primarily the more compact model design leads to
fewer constraints and finally the increased performance. We
can derive the compactness of the models using space com-
plexity analysis. Model 1 has a space complexity of O(n×m)
because of the succ matrix (where n is the number of cus-
tomers and m the number of vehicles). On the other hand,
Model 2 has a space complexity of O(n). The number of de-
cision variables (space complexity) says little about the total
number of instantiations because we also need to take the
domain sizes of the variables into account. However, con-
straint propagation takes longer if there are more decision
variables because with each instantiation more constraints
need to be checked (assuming each decision variable has the
same degree of constraints as it would have in a more com-
pact model). Finally, we note that the symmetry breaking of
Model 1 is a significant performance overhead compared to
Model 2 where no symmetry breaking is required by design.

Moreover, our evaluation shows that in particular the“Near-
est Neighbour” value ordering heuristic leads to very good
performances. However, from our results we could not deter-
mine for definite which variable ordering heuristic provides
the best performance. Equally, we were not able to confirm
the usefulness of Luby Search in this context.

In conclusion, Model 2 outperforms Model 1 significantly
because of its more compact design. We were able to as-
certain an improved performance using the “Nearest Neigh-
bour” value ordering heuristic. However, future work should
further investigate the performance of various variable or-
dering heuristics. We suggest to use Model 2 and focus on
Luby Search in combination with random or semi-random
variable ordering heuristics (like the “Probabilistic” heuris-
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tic shown in Section 4) in combination with the “Nearest
Neighbour” value ordering heuristic. Using the same model
and value ordering heuristic throughout the evaluation will
help to focus on the effect of variable ordering heuristics.
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