L4 Project Progress Report

2079884F - W. David Frohlingsdorf

Due by Friday the 16*® of December 2016 .

1 Project Description :
The project is based on a self-proposed topic mld-‘éi{plures a novel idea for a
locking protocol which shall be called Inheritanée Locking hereinafter. Inheri-
C(L\{mv\- Ao b tance locks successfully prevent system deaﬁll‘é,cks as well as starvation, which
has been proven to be an issue in most mutual exclusive locking protocols.
Here is a brief description of the pr otnto]

Lets consider the resource allocation gra.ph (sometimes called wait-for graph)

_ (¢_ = as introduced by W‘loh ,1?‘,1-972 In particular, each process and re-
¢ CQc(e“ . source is represented as a single node in a directed bipartite graph. Each node -

has at most one outgoing edge to one of its counterparts. That is, a resource

.) node might have an outgoing edge to a process node which means that this

s oY resource is-allocated to the according process. Similarly, a process might have

) 7 7 an outgoing edge to a resource node which means that the process is waiting

1l L for the corresponding resource to become available. Note that in modern terms

process would usually mean thread and resource would be the equivalent to a

X lock. However, for consistency we shall stick to the terms process and resource

© N\ when considering the resource allocation graph. Furthannore, classically it is

3 J' assumed that each resource might have more than one instance. However, this

S) is rarely true in single mutex environments and for simplicity this point is thu e-

N} — \\fom omitted at this stage. The novel idea of the Inheritance Locking protocol

S 2 is to introduce a new mechanism for locking (that is allocating) and unlocking

dusl) vy ER of a resource. In particular, if a process tries to lock a resource which is alrcady
] —

%, .

allocated to another process, it will check ltl}e ;% of the graph’s component
in which the resource resides in. If the sink happens-to be the requesting pro-
cess, the request will be successful as the allocated process is waiting for the
requesting process. This means a requesting process might temporarily inherit
a resource from a waiting process. In particular, while a process is waiting for
a resource, resources already allocated to this process might be pre-empted.

Leté consider a specific example now. Figure 1 shows a resource allocation

graph at an arbitrary point of time during execution. P1 and P2 are currently
blocked as they are waiting for resource to become available while holding a
number of resources themselves. P3 might successfully request R1, R2 or R3 as
it is the sink of these graph nodes. On the other hand, P4 does not hold any

(('L\-J"'(’ "'\‘"&\)) :

.7.3 ‘ l‘ r‘j

o

)
i
'\
Pt
SN
ST Y (
2
\l \ .
Whatt. does

_}"'U Py Htee |

:lo [R¥) "\L‘O
CANET =

 {nl

i DL’*@M«E bedtec-

o Gt

FPRLCES Lt e
o ceatyte ey

5"~f"r"§ 1 e 4

e M oM\V) o
Y i“"’g‘sc‘*

A//

resource currently and would not be successful in requesting a resource as all
resources are currently allocated and P4 is not the sink of any resource nodes.
Therefore, if P4 tries to allocate a resource, it would become blocked until this
resource becomes available.

Figure 1: Resource allocation graph \

=

2 Progress

% s boeu towpleked

. L S e .
Up until now I'ligve-dofie an extensive literature review on the topic and H&ve
implemented an Inheritance Lock library for C/C++ using Pthreads. Moreover,
rbadery] WG —\1'3 I have written a miao—bmﬂk test suite for any generic locking protocol

"
YA s moak i:)coci

which checks === —— — S o iy aede detwil
. . . . o Wow
e The speed of locking and unlocking N locks with a single thread
e The speed of locking and unlocking a single lock with a single thread M
times
¢ The capability of handling a deadlock situation
e The capability of handling a starvation situation o macce dedal (e

Moreover, I have successfully written a model for the SPIN-Model checker to 4we_ roded
P verify that the Inheritance Locking protocol does not suffer from deadlocks nor

y [rom starvation, but ensures mutual exclusion.
o

3 Plan

The further plan of action is to improve the bep¢hmark tests potentially using a
genetic programming approach as well as refiping the SPIN model. Furthermore,
it would be very desirable to run the Inhepifance Locking protocol on a number
of standard micro and macro-benchinarle tests. The next couple of months are
therefore. designated to benchimpatk testing and evaluation of the protocol.

"
| A
uw wq\gc, Awval, g/ (—C{

) "
/l/walﬁ'be | OAM,@SQ

& /)7 ’\‘ Sul@ "o (€% CL('\A’\

4 Problems T T R wukit gou explaiv.
!
The protocol itself contains some limitations and smaller issues which shall L;\L-C/UJ.M"l?

honestly be discussed in the 1sser1.at:on
owever, the blggestgﬁ%zs o far has been that it turned out to be more
difficult than expected to compare different protocols and concurrent program-
ming approaches (transactional memory for example) to one another. This is bugde
partially due to the fundamentally different paradigms underlying the various Lo g ¢
protocols and approaches. Moreover, | found it often difficult to find usable open
source code with good documentation on the internet. Last but not least, we & T ,wee "a—S
found it problematic to decide whether work on Inheritance Locks (or similar) wice ofcac!em ok ing
-has been done beforét During my literature review I could not find anything
locles fike closely similar to it, h wever, there is still a considerable risk that the t%gi has ? e’l‘k‘ﬁ loo k-

Yoo \w:em\ been explored previously. L er oﬁ@
A il
Si'way Ar—
I fecak kuee

-r‘(u. \3 wt
g ol f,uo“-'f‘u

