
The protocol’s idea is strongly influenced by Chapter 7 
Concepts” book by Abraham Silberschatz, Peter B. Galvin and Greg Gagne. Moreover, I shall point 
out three more important papers for the protocol: 
1. Holt 1972 Some Deadlock Properties of Computer Systems, Computing Surveys, Volume 4, 
Number 3, pages 179-196 
2. Coffman et al. 1971 System Deadlocks, ACM Computing Surveys, Volume 3, Issue 2, Pages: 67
3. Dijkstra 1965 Cooperating Sequential Processes, Technical Report, Technological University, 
Eindhoven 
These papers essentially introduced the resource
deadlock and the dinning philosopher problem respectively.
The authors introduce in “Operating System Concepts” the following protocol: “If a process is 
holding some resources and requests another resource that cannot be immediately allocated to it 
(that is, the process must wait), then all resource the process is cur
[...] The pre-empted resources are added to the list of resources for which the process is waiting. The 
process will be restarted only when it can regain its old resources, as well as the new ones that it is 
requesting. “. Applying this protocol to the dinning philosopher problem, however, shows that it 
suffers from starvation. Namely, 
and therefore has to give up all the forks of her possession. Hence, the 
eating and so on and so forth.  
I would like to redefine this protocol such that: A waiting philosopher only gives up her fork if she is 
waiting (directly or indirectly) for the requester to give up a resource
Let me illustrate this protocol with an allocation graph (note that each resource has only one 
instance -as it would be the case with a mutex
 
P2 is currently holding R1 and waiting for one of the 
resources hold by P1 (R2 or R3). P1 is waiting for reso
which is currently held by P3.  
P3 can therefore freely use R1, R2, R3 and of course R4. On 
the other hand, P4 can not do this as none of the processes 
are waiting for P4 (directly or indirectly). Let’s 
would like to lock R1: In this case
P2 and hence position itself into the waiting tree for P3.
In fact, it is quite easy to see that we would always have trees and never a cycle in the allocatio
graph. In the root positions there would be running process
contained within their tree. 
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There are two clear disadvantages of this protocol though: Whenever we try to acquire a lock, we 
risk losing integrity of any critical region we might be in. For example: We might acquire a lock for a 
database table and read from it. Next we try to acquire a second lock for a different table (we might 
therefore give up our first lock temporarily). Once we are holding the second lock, it would be a 
mistake to assume that the read data from the first table is still the same! The second disadvantage: 
We are required to lock and unlock resources in a strict Last-In-Firs-Out order (a stack). Let’s 
consider the given example without this limitation: Imagine P3 starts using R2 and then gives up R4 
(before releasing R2).  This could lead to starvation of P1 (and P2) as R4 could easily be taken by 
another process by the time P3 has finished with R2. 
 
During my project I would thoroughly investigate these kinds of limitations. 


