
Continuous Integration in CFMGR

W. David Fröhlingsdorf
Supervisors: Stefan Stancu and Adam Krajewski

CERN
CH-1211
Geneva 23
Switzerland

Cern Summer Student Programme — 19/6/17 to 8/9/17

Abstract

Cfmgr is a managing tool for network devices. At the moment there is no way to automatically check the working
behaviour of the tool, meaning that a lot of effort is spend into manually testing the tool after an update. During
my stay at CERN I developed a black-box testing framework for Cfmgr according to Continuous Integration
practices and successfully deployed the framework using Jenkins and Docker. This report discusses in detail
how the framework works and how it can be configured, and equally gives a broad problem description and
outlines future work directions.

Contents

1 Background 1

1.1 CFMGR . 1

1.2 Continuous Integration . 1

1.2.1 Jenkins . 1

1.2.2 Docker . 2

1.2.3 Black-box testing . 2

2 Objective 3

2.1 Aim . 3

2.2 Plan of attack . 3

2.2.1 Code structure . 4

3 Implementation 6

3.1 CFMGR Interaction . 6

3.2 Protocol Parameters . 6

3.3 Sensitive Data . 7

3.3.1 Passwords . 7

3.3.2 Community Strings . 7

3.4 TFTP Snapshots . 7

3.5 Simple test . 8

3.6 Custom cases . 8

3.7 Customise automatically generated tests . 8

3.8 Populator . 9

3.8.1 Command adder . 10

i

3.8.2 Populate . 10

3.8.3 Firmware checking . 10

3.9 Request IDs . 10

3.10 Timestamps . 10

3.11 Channeliser . 11

3.12 Proxy class . 11

3.13 OMAPI . 11

4 Outcome 13

4.1 Recording structures . 13

4.2 Recordings . 13

4.3 Future Work . 13

ii

Chapter 1

Background

1.1 CFMGR

Cfmgr is a network configuration tool which has been developed by CERN to simplify and automate the configu-
ration of network devices. Typically, network devices can be configured via a command line interface (accessible
through Telnet) and SNMP. However, interfaces can vary greatly between vendors and firmware versions. Ergo,
Cfmgr greatly simplifies the configuration of network devices in CERN’s network by providing a uniform inter-
face. Moreover, Cfmgr automatically fetches and modifies information from LANDB, CERN’s database for all
network devices and users.

Cfmgr is written in Perl and finding staff with the required skill and knowledge is becoming increasingly
difficult. Maintenance is in particular complicated, especially for the core modules of the software. Substantial
manual testing is needed to ensure that all specific procedures relying on the changed software still work as
intended. Furthermore it is difficult and error-prone to identify all the components that might be affected by a
change.

1.2 Continuous Integration

Continuous Integration (CI) is the process of automatically building and testing a code base each time that it has
been changed. This approach has the huge advantage that accidentally introduced bugs can be detected right
away and gives a degree of certainty that the changes have not introduced unwanted side-effects. Cfmgr could
greatly benefit from continuous integration as it would make maintenance much easier.

1.2.1 Jenkins

One of the most popular tools for continuous integration is Jenkins. Jenkins is a server application written in Java.
It can be used via command line or, more conveniently, via a web-based interface on TCP-port 8080. Typically
Jenkins is used in combination with a version control system like git. Builds and tests can be triggered periodi-
cally, manually, each time a new commit or merge has occurred or any combination of these. It is necessary to
create a web-hook on the version control repository manager (GitLab, GitHub etc.) to notify Jenkins each time a
new commit or merge has been pushed to the remote repository.

Jenkins profits from a large amount of add-ons and is therefore extremely versatile. Furthermore, the pipeline
feature allows the build stages to be defined in a Jenkinsfile which resides in the code base itself, meaning that

1

any changes to the build stages will be version controlled too, making the project portable and self-contained.

1.2.2 Docker

Docker is a virtualisation software which can be best described as a light-weight virtual machine management
system. The core entity of Docker are images. A Dockerfile specifies how an image is build by using a parent
image and providing simple shell script steps. For example, the Dockerfile shown in Algorithm 1 could be used
to create a simple Ubuntu image with Haskell installed on it.

Algorithm 1 Dockerfile to create an image with Haskell installed on Ubuntu
1: FROM ubuntu:14.04
2: RUN apt-get install haskell-platform

Such an image can then be used to create yet another image on top of it in the same manner. This makes
docker images much more powerful compared to virtual machines as they can easily be reused and extended
giving a very versatile environment. An image can be used to launch a docker container. A container is a
running instance of a docker image. There can be arbitrary many containers of an image each independent from
another, but extremely light-weight as they all share the same image.

I used Docker in combination with Jenkins in order to run all test cases inside a container. Jenkins first
builds a base image from CentOS7 installing all required software for Cfmgr and the mock-emulator inside of
it (see mock emulator/docker/machine). Using this base image, Jenkins then adds the Cfmgr code base and
configuration files into a deploy image (see mock emulator/docker/deploy). Note that it is not possible to add
parent files of the Dockerfile to an image. As a workaround Jenkins first copies the Dockerfile into the root of the
repository as well as the secrets and configurations into the deploy directory. Jenkins deletes the created copies
after a successful build of the image. However, should the build fail the copies remain in place until a successive
Jenkins build is successful (see Jenkinsfile). Once the deploy image has been build, Jenkins starts a container of
the image running the testsuite inside of it and copying over (from the container to the CI machine) the results
once the testsuite has been finished.

1.2.3 Black-box testing

Black-box testing is a method of testing software without touching the source code itself. Even though it is
restricted to a high-level inspection of the software, it offers some advantages over other testing paradigms.
Firstly, no knowledge of the source code is required. This is particularly useful when the source code has a high
complexity or is often changed. Secondly, black-box testing is not limited to a programming language. This
means the software could be completely replaced as long as the high-level testing requirements are still fulfilled.
These properties make black-box testing particularly interesting for testing Cfmgr.

2

Chapter 2

Objective

2.1 Aim

The aim of the project was to set up Jenkins such that it would trigger a command on Cfmgr to configure a
switch and check that the switch has been configured as expected. However, this high-level problem description
turned out to be not feasible in practice. In particular, the incorporation of a physical network device is highly
problematic. It would require that the switch is always switched on and available for test cases. Jenkins would
be required to log in to the switch and somehow verify that the switch has been configured correctly. Moreover,
Jenkins would need to make sure that the switch is always in the same state before the test case is run. Finally,
it would be difficult to test different firmware versions on the same switch as a physical device can only have a
single firmware version installed at a time.

These reasons make it obvious that this approach is not practical and would make testing more complicated
than necessary.

2.2 Plan of attack

As pointed out in Section 2.1 the initial project proposal is not easily implementable and would suffer from a
limited test coverage. For this reason we followed a different approach to solve the problem.

Using a proxy between Cfmgr and the switch we are able to record communications on all used protocols
(we call this recording, Figure 2.1a). In a second step, we can then use this recording and reply to requests from
Cfmgr to the proxy without forwarding the requests (called sequencing, Figure 2.1b). From the point of view of

(a) Recording

(b) Sequencing

Figure 2.1: Plan of attack

3

Cfmgr there is no difference between recording and sequencing. However, should there be a request which does
not correspond to our recording we can simply fail the test and stop replying to Cfmgr. Using a collection of
recordings associated with commands we can easily set up Jenkins to test Cfmgr against this collection.

2.2.1 Code structure

Almost all relevant code for the mock-emulator resides inside the mock emulator directory. All operations should
be run using the Makefile which will automatically activate and deactivate the virtual environment as well as
using authbind (allows non-root port bindings in privileged range). Typically the make will call a bash script in
mock emulator/scripts which handles the command. The command make run sequencer can be used to start the
sequencer and the commands make run recorder and make populate args=rec (see Section 3.8) can be used to
start a recording.

The directory proxy recorder contains the recorder. run recorder.py contains a handler class for recording
and code to start the handler if the recorder is started with make run recorder. The handler will load all recording
configurations from config.json.

• json-record is the path where the recording will be saved

• fail-record is the path where a failed recording will be saved (useful for debugging)

• snmp-addr is the IP of the snmp proxy server (should almost always be 127.0.0.1)

• snmp-port is the SNMP port of the proxy server (should be 161)

• tn-addr is the IP of the telnet proxy server (should almost always be 127.0.0.1)

• tn-port is the telnet port of the proxy server (should be 23)

• target-machine is the IP address of the remote network device. In the future it should also be possible
to use a URL here (see Section 4.3).

Recorder.py contains a class which is used to build up the recording file. By default new entries are appended
to the recording field. However, the field can be changed if other data should be recorded. Note that all fields
other than the recording field will be ignored by the sequencer. The handler sets up the recorder and starts
all protocol proxies which can be found in the subdirectories (mock emulator/proxy recorder/snmp proxy and
mock emulator/proxy recorder/telnet proxy).

The sequencer (in mock emulator/sequencer) has been build to mirror the proxy recorder. run sequencer.py
contains a handler class for sequencing and code to start the handler if the sequencer is started with make
run sequencer. The handler will load all sequencer configurations from config.json.

• json-record is the path of the recording used for sequencing

• snmp-addr is the IP of the snmp server (should almost always be 127.0.0.1)

• snmp-port is the SNMP port of the server (should be 161)

• tn-addr is the IP of the telnet server (should almost always be 127.0.0.1)

• tn-port is the telnet port of the server (should be 23)

• timeout is the amount of time (in seconds) until the sequencer times out (failure because not all ex-
changes in the recording have been processed)

4

Sequencer.py handles the recording. In particular, it waits for requests from the protocols and replies according
to the recording if the request matched the next exchange in the recording.

5

Chapter 3

Implementation

3.1 CFMGR Interaction

Typically the mock-emulator starts Cfmgr with a single command. However, often this is not enough and more
subsequent user input is needed. For example, Cfmgr often needs confirmation ([y]) etc. In order to handle this
requirement an interaction class has been build (mock emulator/cfmgr expect/CfmgrExpect.py). The functional-
ity of this class is straightforward. Using a given interaction file which maps patterns to replies (each test case
has its specific interaction patterns, see also Subsection 3.7), the run method triggers Cfmgr with the command
and if any of the patterns occurs, the corresponding reply is sent. The method returns with a tuple containing the
exit code and the output of the Cfmgr interaction.

Cfmgr expect can be configured with mock emulator/cfmgr expect/config.json.

• cfmgr-start defines the location of cfmgr.pl relative to mock emulator

• timeout-seconds defines in seconds how long Cfmgr should be given to complete or prompt for
user input. This timeout should be reasonable long, as some operations require longer than a minute to
complete, and should be at least as long as the sequencer timeout defined in mock emulator/sequencer/co
nfig.json

• cooldown-seconds defines a wait time after the interaction with Cfmgr has finished. This cooldown is
necessary in order to allow the recorder/sequencer to finish processing the final interactions in the pipeline.
If no or a too short cooldown is set, recordings might become incomplete and/or the sequencer incorrectly
reports an error.

3.2 Protocol Parameters

Occasionally the communication protocols (currently telnet and SNMP) are required to be configured differently
from command to command. The ProtocolParams class in mock emulator/protocol params/ProtocolParams.py
is responsible for this task using parameters for the configuration. All parameters are saved in a single object
which is basically a sophisticated nested dictionary. There is no requirement about the structure of the dictionary,
but by convention the first key layer should be the name of the protocol. Parameters are loaded from a json file
which should be provided together with the recording. If no json file was provided or a requested parameter
was not provided inside the json file, then the parameter’s default value will be used instead. Therefore, each
parameter request has to provide a default value which will be returned instead if the requested value can not be
found.

6

If sensitive data needs to be provided to a protocol, it should not be provided directly in the json file. Instead
a mapping should be provided which can be resolved during runtime. The class mock emulator/protocol param
s/PreProcessParams.py pre-processes all parameters and can therefore be used to execute this task. An example
where this mapping is required are SNMP community strings as described in Subsection 3.3.2.

3.3 Sensitive Data

3.3.1 Passwords

The telnet recording should not capture usernames and passwords. Therefore the SensitiveChecker in mock emul
ator/mock modules/SensitiveChecker.py checks for replies from the network device which requests for such. The
file mock emulator/mock modules/telnet expect tokens.json defines the patterns which signal that a username or
password is about to be typed in. All subsequent telnet traffic originating from Cfmgr will be ignored until a
newline or null-character (function terminating char in mock emulator/mock modules/stringifier.py) has
been received.

The equivalent happens in the sequencer. This means that while the sequencer is used any username/password
combination is valid. A change in the authentication credentials will therefore have no effect on the recordings.

3.3.2 Community Strings

The pysnmp (which is used by the mock-emulator for SNMP traffic) library requires a community string to accept
incoming requests. Similarly pysnmp requires a community string to connect to the remote network device. As
those community strings should not be saved in the recording, a protocol parameter mapping is used instead
(see Section 3.2). In particular, each device can either be unconfigured or configured. The according state is
saved in the protocol parameter field ["snmp"]["community"] as public and private respectively.
The parameter pre processing class will call the community string dissolver in mock emulator/protocol param
s/SNMPCommunityDissolver.py which will use the device name and the parameter to load the read only and
the read write community strings for the device. These read only and read write community strings will be set
in the protocol parameters. Pysnmp will accept requests with either community strings but only the read-write
community string is used to forward requests to the network device.

3.4 TFTP Snapshots

Often Cfmgr’s behaviour depends on the content of the TFTP root as well as the cvs directory. To allow a
reproducible test cases the populator automatically creates snapshots of the current tftp/cvs content and the
testsuite restores the according snapshot for each test case respectively. The corresponding bash scripts are mock
emulator/scripts/create snapshot.sh and mock emulator/scripts/apply snapshot.sh. Note that not all files, such

as firmware files and skeletons, have to be saved as they remain the same throughout all snapshots. Therefore
the snapshot archives can be kept light. By default, snapshots are saved in the snapshots directory next to the
recording and have the same name as the corresponding recording (apart from the file extension .tar.gz, see
also Subsection 3.7).

7

3.5 Simple test

The Makefile command make simple test runs a single, user defined test case rather than the entire testsuite. This
utility can be very useful for debugging. This single test case is defined by the file mock emulator/tests/simple t
est.json.

• rec file defines the location of the recording

• cfmgr script defines the command to be given to Cfmgr

• cfmgr interaction [optional]* defines the location of the interaction file with Cfmgr (see Section
3.1)

• protocol parameters file [optional]* defines the location of the protocol parameters (see also
Section 3.2)

• snapshot file [optional]* defines the location of the tftp snapshot archive (see Section 3.4)

*All optional fields have to be provided, but can be set to null if not needed.

3.6 Custom cases

Custom cases, which are prepended to automatically configured test cases, can be defined in mock emulator/tes
ts/custom cases.json.

• name is the name of the test procedure

• recording is the location of the recording file

• script is the script to be given to Cfmgr

• interaction [optional]* defines the location of the Cfmgr interaction file (see Section 3.1)

• protocol-parameters [optional]* defines the location of the protocol parameter file (see Section
3.2)

• snapshot [optional]* defines the location of the tftp snapshot archive (see Section 3.4)

*Optional fields can be left out if not needed.

3.7 Customise automatically generated tests

The automatically generated test cases are based on recordings in the location mock emulator/tests/recordi
ngs (see Figure 3.1). In particular the paths from the recordings directory to the location of the base files
define the test commands for Cfmgr. The base file contains the location of the interaction.json and proto-
col parameters.json files relative to the base file (one location per line). interaction.json defines the Cfmgr
interaction (see Section 3.1) and protocol parameters.json defines the protocol parameters (see Section 3.2) re-
spectively. These files should normally be placed next to the base file to be not mistaken for a recording by the
test case generator. Interaction and protocol parameter files are optional.

8

Figure 3.1: Example - Recording tree

Recordings must have the exact device name as used in CSDB followed by the extension .json. They have
to be placed in a directory tree below the base file which denotes the device family and firmware (for example
ICX/FW1/SWITCH-A.json). The name of the firmware directory has to correspond exactly to the human readable
output of Cfmgr when the fware command is run. If the device name begins with an underscore it indicates
that the recording is empty and should be populated by the populator (see Section 3.8). All recordings beginning
with an underscore are ignored when the testsuite is run.

TFTP snapshots (see Section 3.4) are placed in a directory snapshots next to the recording. Each snapshot
is named in the same manner as the corresponding recording (snapshots/SWITCH-A.tar.gz). If for a
recording no archive can be found, it is assumed that there is no snapshot for the recording.

Recording files can be amended. All fields apart from the recording field are completely ignored by the
sequencer and have therefore no effect on the test cases. A recorded exchange (inside the recording field)
can be extended with the side-effect field. The side effect must be a simple terminal command which will
be executed in the location of the recording file before the reply is sent back to Cfmgr. A side effect might for
example copy a file into the tftp root folder to simulate tftp traffic from the device to Cfmgr.

3.8 Populator

The mock-emulator profits from a tool called populator. The populator can automatically add and record new
commands for the testsuite.

9

3.8.1 Command adder

More commands can be added to the testsuite by running make populate args=add. A prompt will ask for the
command (input example: switches ops fware). Once all wanted commands have been added, an empty
input will exit the prompt and all new commands will be created in mock emulator/tests/recordings. In particular,
the model in mock emulator/populator/model will be copied to the corresponding positions. Before running the
populate command, as described in Subsection 3.8.2, make sure to configure all base files of the newly added
commands as needed (see Subsection 3.7).

3.8.2 Populate

The command make populate args=rec instructs the populator to check all recordings in mock emulator/tests/re
cordings. All empty recordings (that is, json files beginning with an underscore) will be first checked against the
firmware on the target device as described in Subsection 3.8.3 and secondly automatically recorded. Moreover,
the populator saves a tftp snapshot inside the neighbouring snapshots directory and saves the Cfmgr command
to the recording in the field command. The command field is completely ignored by the testsuite and only exist
for reference purposes.

3.8.3 Firmware checking

The populator checks automatically that the firmware version defined in the path of the recording matches the
one of the machine. The class mock emulator/populator/FirmwareChecker.py is handling this task. In particular,
it triggers the corresponding firmware command on Cfmgr (for example for a switch the firmware checker would
trigger switches ops fware) and records the communication in the recording field fware. The recorded
firmware request communication is completely ignored by the testsuite and added to the recording file as a
reference only. The final output of Cfmgr is handled as the firmware version. This output has to match the
firmware in the recording’s path and is also saved in the recording field fware-human-readable.

3.9 Request IDs

Each SNMP request PDU hast a request ID which the respond PDU has to contain (in other words, the request
ID has to be echoed). The recorder and sequencer simply copy over the request ID to the response PDU.

3.10 Timestamps

Sometimes it is necessary to ignore a mismatch during sequencing. This is for example necessary if the exchange
contains a timestamp. To ignore such an exchange a list of patterns in form of regular expressions has to be placed
in the ignore-patterns field of the protocol parameters (for example ["telnet"]["ignore-patte
rns"], see also Section 3.2). If any of these regular expressions match the op field of an exchange of the
respective protocol, a mismatch in the exchange is ignored.

10

3.11 Channeliser

At times Cfmgr sends a message on one protocol and immediately sends a message on another protocol without
waiting for a reply. Similarly, in a telnet connection traffic is often echoed or confirmed, but the sender is not
waiting for a reply and keeps transmitting data instead. This can lead to very different sequences in the recording
and needs to be avoided.

To handle this issue the class mock emulator/mock modules/Channeliser.py has been developed. The chan-
neliser ensures that only one communication channel is open at a time. A communication channel is for example
outgoing telnet traffic. Once no more traffic on the currently active channel is recorded, the channel times out
and traffic on other channels is accepted. The channeliser uses layers of channels. For example, outgoing telnet
traffic is a subchannel of the telnet channel. That means if the outgoing channel times out, the telnet channel
becomes the active channel accepting any telnet traffic (ingoing or outgoing). If a subchannel is called, the active
channel changes to the subchannel. If a superchannel is called, the active channel remains the current channel,
but the timestamp is refreshed.

The channeliser uses a static stack, meaning that all channeliser objects work on the very same data. The
channeliser is thread safe and uses a busy wait with sleep to wait for a channel to timeout. There is no obvious
way to solve the timeout with a condition variable as a thread does not wait for another thread, but for a timeout
to occur. More elegant solutions are possible, but the busy wait with sleep suits our problem just fine.

The channeliser can be configured with the configuration file mock emulator/mock modules/config chann
eliser.json.

• timeout is the amount of time (in seconds) until the current channel is lifted (when there is no more
traffic on the channel). In other words, if the channel times out, its parent channel will gain control.

• spin-time is the time (in seconds) that a thread which is waiting for a channel to become available
is sleeping in each spin iteration. The sleep is necessary as otherwise a waiting thread could block the
processor and therefore force the current channel to timeout.

3.12 Proxy class

The abstract class mock emulator/mock modules/Proxy.py (used by mock emulator/proxy recorder/telnet proxy
/TelnetConveyor.py) defines a generic server-proxy class for socket based byte streams which handles automat-
ically channels (see Section 3.11). The class can be configured with mock emulator/mock modules/config pro
xy.json. In particular the timeouts (server socket and connection socket) can be set. Having a reasonable short
timeout is important as otherwise the proxy can not be stopped by the main thread.

3.13 OMAPI

OMAPI Perl is a Perl library, written by CERN, to map Perl code to the original OMAPI library written in C.
Regrettably, OMAPI Perl has not been maintained for some time and depends on an old OMAPI version which is
not available any more. Since Cfmgr requires OMAPI Perl in order to communicate with DHCP servers, OMAPI
Perl had to be amended to work with the latest OMAPI version.

The current version of OMAPI Perl (0.5.3) requires a number of shared libraries, exported by OMAPI, in
/usr/local/lib. However, the latest version of OMAPI does not support all of these required libraries (libraries

11

libdns.a, libirs.a, libisc.a and libisccfg.a are missing). Those missing libraries are still available inside OMAPI
in the dhcp-4.3.5/bind/lib directory though. Equally, the include directory of OMAPI Perl must include dhcp-
4.3.5/bind/include. In OMAPI Perl Makefile.PL and CORE.xs have been changed accordingly.

OMAPI and its bindings need to be compiled with the -fPIC flag in order to be able to use the libraries
with OMAPI Perl (shared libraries). dhcp-4.3.5/bind/Makefile.in needs to be amended so that the bindconfig
contains CFLAGS=-fPIC. Secondly, the OMAPI library needs to be configured with ./configure CFLAG
S="-g -O2 -Wall -Werror -fno-strict-aliasing -fPIC".

Please study the Dockerfile in mock emulator/docker/machine thoroughly for more information.

12

Chapter 4

Outcome

4.1 Recording structures

The mock emulator/tests/recordings directory contains test cases in an intuitive and easily extendible hierarchy.
As described in Section 3.8 the populator can be used to easily add and populate new recordings. Adding new
firmware versions requires a little bit more work but can also easily be done by adding the necessary directories
and empty recording files (starting with an underscore) to the recordings directory.

4.2 Recordings

Using the recorder and the sequencer we were able to test the six most common switch operations (download,
fware, init, load, stock and uptimes) on two different brand switches in the lab. These test cases are
automatically run by Jenkins in a Docker container on the CI VM each time new commits are pushed to the
ci-test branch on GitLab (see also Subsection 1.2.2).

4.3 Future Work

Currently the mock-emulator uses /etc/hosts to direct traffic from Cfmgr to the recorder/sequencer. The real IP
address of the target machine has to be given to the proxy recorder in mock emulator/proxy recorder/config.json
and is not automatically updated (in particular the populator, Section 3.8, uses the IP address given in the con-
figuration). This is a significant limitation of the mock-emulator and can only be overcome by adding an -ip
flag option to Cfmgr. The ideal position of the flag from the viewpoint of the mock-emulator would be between
the command and the device name, because the position of the command (first) and the device name (last) are
occasionally used in the code. Updating the mock-emulator to work with such an enhanced version of Cfmgr
should not take too much work.

A further thinkable feature would be an automatic check of the behaviour of new firmware versions. In
particular, recordings could be used to test if a switch with a newer firmware replies in the same way as with the
firmware previously used for the recording.

Last but not least, the mock-emulator is implemented in Python and contains a strong separation of the logical
and hardware layers. Should new Cfmgr modules be implemented in Python too, it would be possible to change
the mock-emulator to a mock unit test, thus avoiding the network traffic altogether.

13

	Background
	CFMGR
	Continuous Integration
	Jenkins
	Docker
	Black-box testing

	Objective
	Aim
	Plan of attack
	Code structure

	Implementation
	CFMGR Interaction
	Protocol Parameters
	Sensitive Data
	Passwords
	Community Strings

	TFTP Snapshots
	Simple test
	Custom cases
	Customise automatically generated tests
	Populator
	Command adder
	Populate
	Firmware checking

	Request IDs
	Timestamps
	Channeliser
	Proxy class
	OMAPI

	Outcome
	Recording structures
	Recordings
	Future Work

