
Inheritance Locks

W. David Fröhlingsdorf

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow
G12 8QQ

Level 4 Project — March 24, 2017

Abstract

During the last decades, computer systems gradually turned from sequential systems into parallel systems. This
development has been happening in a small (multi-core processors) as well as in a large scale (networks and com-
puter clusters). The underlying concept of multiple working units and shared resources, however, is essentially
the same. In such systems, it is often necessary that a working unit requires exclusive access to a resource, or
that a sequence of operations has to be performed as if it was one atomic operation. To fulfil these requirements
we need locking protocols and similar concepts.

For this reason, much research has been done over the last fifty years and many concepts have been explored,
including widely used ones such as mutexes, semaphores and transactional memory. Unfortunately, many proto-
cols suffer under the risk of the so called deadlock, starvation and/or livelock in which the system is captured in
an unfavourable state. To the best of our knowledge, no perfect locking protocol has been explored and further
research is needed to entirely eliminate this risk occurring in parallel systems.

We therefore propose a new locking protocol, the Inheritance Lock Protocol, which prevents deadlock and
starvation. We show the relation to existing locking protocols and show the correctness of the protocol. We also
test the performance of the protocol and compare it to well known protocols using benchmark tests, showing
that it is comparative to transactional memory in terms of performance. We also illustrate the limitations of the
proposed protocol and test the protocol on a number of common applications.

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow students and to be
distributed in an electronic format. Please note that you are under no obligation to sign this declaration, but
doing so would help future students.

Name: Signature:

i

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Outline . 3

2 Background & Related Work 4

2.1 Terminology . 4

2.2 Related Work . 5

2.2.1 Havender’s pioneer work . 5

2.2.2 Early work on deadlock avoidance . 5

2.2.3 Dining Philosophers Problem . 6

2.2.4 Deadlock properties . 7

2.2.5 Wait-For Graph . 7

2.2.6 Deadlock detection . 9

2.2.7 Locking in databases . 9

2.3 State of the art . 10

3 Inheritance Locks 11

3.1 Origin . 11

3.2 Approach . 12

3.3 Illustrative example . 12

3.4 Definition using Graph Theory . 13

3.4.1 Directed Graphs . 14

ii

3.4.2 Relation to Inheritance Locks . 15

4 SPIN Model Checking 19

4.1 Model design . 19

4.2 Properties . 20

4.3 Setup . 20

4.4 Results . 21

5 Inheritance Lock Library 23

5.1 Aims . 23

5.2 Design decisions . 23

5.3 API . 24

5.4 Implementation . 24

6 Benchmarks 27

6.1 Micro benchmark . 27

6.1.1 Methods and design . 27

6.1.2 Results . 30

6.1.3 Discussion . 31

6.2 Tyche benchmark . 31

6.2.1 Methods and design . 31

6.2.2 Results . 33

6.2.3 Discussion . 33

7 Application stress test 36

7.1 Implementation . 36

7.2 Application testing . 37

7.2.1 Design . 37

7.2.2 Results . 37

7.2.3 Conclusion . 38

7.3 Stress test . 38

iii

7.3.1 Design . 38

7.3.2 Results . 39

7.3.3 Conclusion . 39

7.4 Discussion . 39

8 Scenarios & Limitations 40

8.1 Scenarios . 40

8.1.1 Dining Philosophers with Inheritance Locks . 40

8.1.2 Bank Transaction . 41

8.2 Limitations . 42

8.3 Library usage . 43

8.4 Possible improvements to the library . 44

8.5 Condition variables in inheritance locks1 . 45

8.6 Priority inversion . 45

9 Conclusion 47

9.1 Summary . 47

9.2 Future Work . 48

9.3 Personal Reflection . 48

9.4 Acknowledgements . 49

Bibliography 50

Appendices 53

A Scripts used for running SPIN in Computer Cluster 54

A.1 login.exp . 54

A.2 remoteWorker.sh . 54

A.3 runExpect.sh . 55

A.4 Makefile . 56
1In this and the following sections we return to the process and resource terminology as more generic aspects of inheritance locking

are discussed

iv

B Source code extracts of the library 57

B.1 inheritance lock api.h . 57

B.2 acquire() Function . 58

B.3 release() Function . 58

C Scripts used in the tyche benchmark test 60

C.1 runO3.sh . 60

C.2 runExperiment.sh . 60

C.3 outToCsv.py . 61

C.4 stat.py . 61

D Scripts and source code used in the application stress test 63

D.1 pthread interpose.c . 63

D.2 run.sh . 66

D.3 simple-unsharp-mask.scm . 66

Glossary 67

v

Chapter 1

Introduction

Since at least the 1970s it has become standard in computing to run processes concurrently on the same system.
This practice has many advantages such as improved processor utilization, increased security and flexibility by
an intermediate operating system. Before the introduction of multi-processing, central processor unit (CPU) time
was wasted while waiting for an Input/Output (I/O) operation to finish. Moreover, each program had to be written
in such a way that it was tailored for the specific machine’s hardware. This was not practical and the introduction
of multi-processing together with operating systems was a milestone in computing.

For the last twenty years it has become common practice to fit computers with several CPUs or CPU-cores.
For at least the last 10 years all mainstream computers have been sold with two or more cores. This means,
processes can now be executed in parallel (that is, literally at the same time). Many programs make use of this and
deploy several threads which individually execute separate parts of the program in parallel. This can increase the
speed of the program and the system significantly. A similar development can be observed in the inter-connection
of computers. Global computer clusters and data centres allow high connectivity and computational power. With
the increase of cloud computing and the rapid growth of the internet (Figure 1.1), this development is gaining
importance.

Figure 1.1: Internet hosts 1964-2018, logarithmic scale. Source: [25]

On the downside, there are many issues arising from these developments. This is probably best explained
with an analogy. Consider a library; as long as there is only one visitor in the library he can read any book and

1

take as many books out as he likes. However, as soon as more visitors arrive, it becomes more likely that a visitor
wants a book that has already been taken out by a different visitor. Similar to the analogy with the library; there
are limited resources in computing systems and running several processes will lead to some clash sooner or later.
For example, two processes can not read from a hard disk drive (HDD) at the same time as a standard HDD has
only a single read/write head which can not physically be at two locations at the same time. It becomes even
more complicated when considering reading and writing operations of processes. A thread might write a variable
to memory which will immediately be overwritten by another thread which did a lengthy operation on the same
variable. It is easy to see that these kind of scenarios can happen and lead to problems.

Locking protocols have been introduced to address this issue. The idea behind a locking protocol is that
a process or thread can autonomously lock a required resource for as long as needed to securely finish the
computation on this resource. The term, mutual exclusive access, is usually used to describe this kind of locking
as no other process or thread has access to this resource for the given time.

Although mutual exclusion is very effective and is often used nowadays, it has limitations specifically when
the locking protocol allows processes to freely lock and unlock resources. That is, a process can place locking
and unlocking requests in any arbitrary order. This can lead to a state where two processes or threads wait
indefinitely for each other to unlock a resource without making any progress. This system state is known as
deadlock. We will discuss limitations of locking protocols in more depth in the next chapter.

1.1 Motivation

Using mutual exclusion for locking resources contains a deadlock risk which is hard to manage. Unfortunately,
the alternatives to mutual exclusion are very limited and developers are therefore often forced to use mutual
exclusive locks for concurrency control. This situation is not ideal and new locking protocols and libraries are
therefore desirable.

Even though the deadlock problem is well known, it is hard to verify freedom of deadlock in a system.
Hartonas-Garmhausen et al. showed that even safety-critical systems can suffer deadlock situations [17]. The
fact that many major companies, like Oracle, Veritas or IBM [22, 38, 51], spot deadlocks in their software shows
how important this problem is.

Hence, the motivation and aim of this project is to develop a new locking protocol which prevents deadlock,
livelock and starvation as well as enhancing the opportunities of developers by providing the developed locking
protocol as a C library.

1.2 Contributions

This report makes several contributions to the field:

• Overview of the state of art, discussing various approaches and key papers from the last 50 years

• Introduction of Inheritance Locks, a novel locking protocol which prevents deadlock, livelock and starva-
tion as well as verification of the protocol using the SPIN model checker

• Performance benchmark tests for locking protocols

2

1.3 Outline

• Chapter 2 contains an overview of background information, previous and related work as well as an
overview of the topic’s terminology.

• Chapter 3 introduces the idea of the Inheritance Lock-Protocol, including a formal definition of the proto-
col.

• Chapter 4 shows how we verified the absence of deadlocks and starvation in the inheritance lock protocol
using the SPIN model checker.

• Chapter 5 introduces the inheritance lock library, implemented in C, including implementation details.

• Chapter 6 contains a description of two benchmarks written to evaluate the performance of a locking
protocol.

• Chapter 7 presents results of using the inheritance lock protocol in compiled software as a shared library.

• Chapter 8 discusses scenarios in which the inheritance lock protocol is useful as well as limitations of the
protocol.

• Chapter 9 contains a discussion about the inheritance lock protocol and state of art of resource locking as
well as a personal reflection of the project as a whole.

3

Chapter 2

Background & Related Work

The issue of resource locking was investigated extensively in the 1960s and early locking protocols were pro-
posed and implemented. As outlined in the previous chapter, the deadlock problem is of huge importance and
many protocols have been developed or amended to address this issue. In this chapter we discuss the various
suggestions regarding resource locking. For this, we define in the following section the terminology which we
use when talking about locking protocols. The terminology is widely used and should be familiar.

2.1 Terminology

• Process: Depending on the context a thread or process which can read/write from/to a resource.

• Resource: Usually a physical device or a memory space holding a variable. A resource is usually guarded
by some kind of lock which means that a process can lock and unlock a resource. The process is granted
exclusive access to the resource while it is holding the lock. Since the actual nature of the resource is not
of interest, the term lock might be used interchangeably with resource.

• Resource instance: If the resource exists more than once and it is irrelevant for the requesting process
which one of the equivalent resources will be assigned to the process, then we talk about a resource with a
number of instances.

• Lock-Request: A process is trying to lock a resource. Whether this request is successful depends on the
locking protocol and the circumstances.

• Lock/Acquire: A process was successful in its locking request.

• Unlock/Release: A process gives up a resource which can then be acquired by a different process.

• Pre-emption: A process is forced to temporarily give up an acquired resource. While a process is pre-
empted, it is also stopped from running (i.e. it is blocked).

• Availability: A resource is available if no process has acquired it.

• Deadlock: Two or more processes, each holding at least one resource, waiting indefinitely on each other
to release the resource.

• Livelock: The same as deadlock, but instead of being blocked the processes do some housekeeping work
while indefinitely waiting for the other process to give up the resource. In other words, the process are
engaged in a busy-wait.

4

• Starvation: A process is waiting for an unacceptable long time for an event to occur. In particular, the
event is not guaranteed to eventually occur. Starvation is a common problem in locking protocols which
prevent or avoid deadlocks.

• Deadlock Prevention: Deadlocks are not possible by the definition of the locking protocol.

• Deadlock Avoidance: Processes are scheduled in such a way that a deadlock can not occur. This usually
requires some pre-knowledge about the required resources of the individual processes.

2.2 Related Work

This section contains an overview of related work in loose chronological order.

2.2.1 Havender’s pioneer work

One of the earliest, highly cited and influential research works regarding locking protocols was presented by
Havender [18]. He points out that there is a threat of deadlock in concurrent operating systems (that is, multi-
tasking systems) and discusses the background of various locking mechanisms such as read/write locks in
databases. Havender suggests four different locking protocols to prevent deadlocks from occurring.

• Approach 1: Ensure that each process locks resources in the same order. To ensure this, each resource has
a unique priority assigned to it. Let m be the highest priority of all resource currently held by a process.
The process is only allowed to lock a new resource if its priority is greater than m. Thus it is ensured that
resources are locked in the same order and that deadlocks are prevented from occurring (proof omitted).
This approach is usually known as hierarchical locking and a number of variations of it have been proposed
for example by Dijkstra[8] and Muhanna[35].

• Approach 2: During a process’s locking phase, require all needed resources at once and release all resource
at once when the operations have been performed. This approach was adopted by many transactional
approaches which were later introduced.

• Approach 3: If a locking-request can not be satisfied right away (because the requested resource is locked
by another process), all resource held by the requesting process are pre-empted (that is, made available to
be locked by any other process) and the requesting process can only resume once the requested and the
previously locked resources are available.

• Approach 4: A process should be prepared to take an alternative route if it is not able to acquire a resource.
Although, deadlocks are prevented from occurring when this approach is used, it is usually not feasible as
alternative routes often end up in a loop and this approach is therefore likely to lead to a livelock situation.

2.2.2 Early work on deadlock avoidance

During the 1970s and 80s a distinction between the terms deadlock prevention and deadlock avoidance became
conventional. Namely, deadlock prevention is a fundamental principle inside the locking protocol which makes
deadlock impossible. Deadlock avoidance, on the other hand, is a mechanism which checks for each locking
request individually whether it is safe in terms of deadlock to grant access to the resource. As long as it is
impossible for a deadlock to occur, the system is in a so called safe state [53].

5

Early work from Habermann [16], Shoshani and Coffman [46] and Dijkstra’s Banker’s Algorithm [7] are
important milestones for deadlock avoidance. We will not further discuss the individual approaches as they are
not of relevance for this report.

While some authors, like Levine [27], argue that it is not always possible to distinguish between preven-
tion and avoidance, protocols are usually still classified in these two categories today. Although the suggested
deadlock avoidance protocols typically work well in theory, they usually lack in performance during locking and
unlocking phases and often require more information about the running processes [12]. Prevention protocols
on the other hand are usually more agile, however as Isloor and Marsland point out, they often block a process
longer than necessary [23].

2.2.3 Dining Philosophers Problem

One of the most famous illustrations of the deadlock problem is the Dining philosophers problem which was
introduced by Dijkstra as an example for his students [9, 8]. The problem states that five philosopher sit on
a round table having dinner together. There is a fork between every two philosophers (see Figure 2.1). Each
philosopher can either think or eat. A philosopher does not need anything for thinking, however, he needs his
right and left fork in order to eat.

Figure 2.1: Dining Philosophers

Lets suppose that if a philosopher would like to eat he first picks up his right, then his left fork. He needs
to wait if the according fork is already in use by his neighbour. Furthermore, a philosopher does not put a fork
down until he has finished eating.

Consider now what happens when all five philosophers start eating at the same time. Each one is picking up
their right fork and indefinitely waits for their left fork to become available. Therefore, the system is deadlocked.

Using the dining philosopher problem, it is easy to illustrate another issue that occurs in locking protocols,
Starvation. Let us now consider an amended protocol so that the philosophers can not deadlock any more. For
this, suppose that a philosopher is allowed to pick up his right and left fork if and only if (iff) both forks are not
used by the corresponding neighbour. Notice that this is essentially the second approach suggested by Havender
(Subsection 2.2.1). Now consider a philosopher who sits between two very hungry neighbours. His neighbours
are almost constantly eating and have only very short thinking breaks. The philosopher can only start eating if

6

his two very hungry neighbours have one of their very rare thinking breaks at the same time. Because this event
hardly ever occurs our philosopher has to starve and can not make any progress within a reasonable amount of
time.

The dining philosophers problem is an excellent illustration as it can be directly mapped to computer systems.
In particular, each philosopher is a process and each fork is a resource which needs to be locked in order to
proceed into the critical section, i.e. the eating phase. It is therefore a suitable example for checking a given
locking protocol for deadlocks and starvation.

2.2.4 Deadlock properties

The work by Coffman et al. [5] is considered to be the first which specifically classifies the conditions which
are required for a deadlock to occur. To prove the correctness of a deadlock prevention protocol, it is sufficient
to prove that one of those conditions can not hold. Coffman et al. show that the following four conditions are
necessary for a deadlock:

• A process claims mutual exclusion over a resource.

• A process waits for a resource to become available while holding resource(s) which have already been
assigned to it.

• Resources can not forcefully be removed, that is pre-empted, from a holding process.

• A circular wait of processes exists such that each process holds a resources which is requested by the next
link in the chain.

2.2.5 Wait-For Graph

As already indicated by Coffman et al. [5], the relation between resources and processes can be modelled as
a directed graph. The first fundamental work on this wait-for graph was done by Holt in 1972 [20]. Holt
discusses system states in a graph theoretical sense. This means, a system is always in a unique state (Labelled:
S, T, U, V,W, ...). By requiring or releasing a resource a process can move the system into a different state. For
example in Figure: 2.2 process 1 can move the system from state S to state T or U . On the other hand, process 2
can not move the system into a different state from state S, therefore process 2 is blocked in S. We can see that
in the given example process 2 is blocked in states S, U and V . Even more, should the system be in State U or V
process 2 will be blocked forever as it is impossible to reach T from those states. We therefore say that process 2
is deadlocked in U and V . States which contain a deadlocked process are called deadlock states. States in which
all processes are deadlocked, in the example State V , are called total deadlock state.

Figure 2.2: System State Transition Graph

7

It is fairly easy to see how this graph is of importance for deadlock avoidance as those protocols are actively
trying to avoid transitions into deadlock states and therefore keep the system deadlock free (i.e. in safe states).
Unfortunately, it is necessary to obtain more information from each process in order to foresee transitions be-
tween system states. Moreover, depending on the complexity of the system, the state space can easily grow
exponentially. It is therefore hard to justify this approach for general purpose libraries.

Holt moves on to analyse specific system states using wait-for graphs. While he distinguishes in his work
between reusable and consumable resources, more recent work usually does not consider consumable resources.
We will therefore only consider an established version of the wait-for graph in which all resources are reusable.
Figure 2.3a shows such a version of a wait-for graph. The circular nodes, named Pi, are representations of
processes. The rectangular nodes, named Ri, are resources. Each resource might have more than one instance.
The number of instances per resource are visualised with black dots inside the resource node. In practice a
resource could be a physical drive or swap space. However, usually a process is not concerned with which drive
or swap space would be allocated to it. Therefore they can be bundled as one resource and each physical device
is an instance of that resource. An edge from a resource instance to a process, means that this instance has been
allocated to the process (for example R2 to P3). An edge from a process to a resource means that the process is
requesting an instance of the resource (for example P2 to R2). If no further instance of a resource is available, a
requesting process is blocked and has to wait for an instance to be released by a process (Figure 2.3c). Depending
on the used locking protocol, a process might request more than one resource at once.

(a) Established Wait-For Graph (b) Simplified Wait-For Graph (c) Resource - Process relation in Wait-
For graph

Figure 2.3: Wait-For Graphs

The situation nowadays has significantly changed because locking protocols are now usually used for syn-
chronizing multi-threaded programs (with the exception of operating systems). This means, a resource is a
specific piece of data on which a number of sequential operations should be performed as a single atomic op-
eration by a thread. Hence it does not make sense to argue that resources in such a scenario have more than
one instance. Many wait-for graphs are therefore simplified (see Figure 2.3b) and assume the principle: One
resource, one instance, one lock.

Wait-for graphs in other approaches

As Minoura [34] points out even older locking protocols, like Havender’s scheme [18] and Habermann’s algo-
rithm [16], can easily be modelled and refined using wait-for graphs. Locking protocols using wait-for graphs
have been proposed by Datta et al. [6], Naimi et al. [36], Barbosa [3] and Oliveira and Barbosa [37] to name just
a few.

8

A further deadlock prevention approach uses Petri Nets which are similar to wait-for graphs as they are based
on directed bipartite graphs. Significant deadlock prevention work using petri nets has been done by Ezpeleta et
al. [11] and by Li and Zhou [28].

2.2.6 Deadlock detection

Another common approach to the deadlock problem is deadlock detection. This means, deadlocks can occur but
the system or the system administrator will resolve the issue by hand, usually by killing one or more processes
which are involved in the deadlock. Nowadays, most ordinary operating systems use this approach because inter-
process deadlock is uncommon and running a deadlock prevention or avoidance algorithm would result in too
much performance overhead [47].

For example, Microsoft has introduced in their operating systems, Windows, the capability to analyse the
wait chain of a process which can be done through the Task Manager since version Windows 7 [32]. While this
is a retrospective approach, there are also deadlock detection algorithms which can be run preventively. Williams
et al. [52] developed a static deadlock detection checker for Java libraries which can directly be run on Java
source code. Their findings suggest that their checker delivers usable results and is often able to verify deadlock
freedom in libraries.

2.2.7 Locking in databases

A major focus in deadlock prevention/avoidance is set on databases as they have to provide as much parallelism
as possible while guaranteeing data consistency. Several key papers discussing locking in databases were pub-
lished around 1980. Rypka and Lucido [43] discuss the difference between read and read/write locks in logical
resources. The differentiation between these two types of locks plays an important role in database concurrency
control.

Most operations in databases are a sequence of read/write accesses which are performed as a single atomic
transaction. It is usually desired that all accessed data stays consistent (that is, unchanged by other transactions)
for the duration of the transaction. Menasce and Muntz study the possibilities to detect a deadlock in such a
transactional environment [31]. Similarly, Silberschatz and Kedam explore ways to ensure deadlock freedom in
a transactional environment. Their work has a particular focus on graph based solutions in two-phase locking
databases [48]. Two-phase locking is an approach in which all required locks are requested collectively once a
transaction has been committed. All read and write operations are only performed once the collective request has
been successful. More recent work on transactional deadlock prevention has been performed by Lou et al. Their
approach uses timestamps and the results show performance improvements, particularly in distributed systems,
compared to previous approaches [30].

Transactional concurrency control has been successfully implemented on applications other than databases
too. In recent years much research on transactional memory has been performed. The idea behind transactional
memory is to perform a block of code in a single atomic step similar to a transaction in a database. Therefore,
transactional memory guarantees data consistency while ensuring freedom of deadlock. However, no side effects,
such as I/O operations, are allowed inside a transactional block and starvation is possible as pointed out by
Herlihy and Moss [19]. Peyton Jones discusses transactional memory in Haskell [40]. The latest versions of the
GNU Compiler Collection (GCC) have a build-in support of transactional memory as well [13, 44].

9

2.3 State of the art

As discussed, early research in the field was mostly concerned with physical resources and competing process in
an operating system. However, this issue has turned out not to be significant enough for most operating systems
and inter-process deadlock is therefore mostly ignored. This is particularly true as the capacity of physical
resources has increased and the operating system takes care of fair scheduling for these resources.

The issue of data consistency has been well understood and addressed in databases. By using transactions
and two-phase locking, freedom of deadlock is ensured too. On the other hand, there is great interest in exploring
further approaches allowing a performance increase.

The recent increase of multi-threading processes has lead to a high demand for locking protocol libraries.
While classic libraries, like the POSIX-Thread (Pthread) or the C++ library, contain locks to ensure data con-
sistency, they do not provide mechanisms to allow deadlock prevention, avoidance or detection. Transactional
memory can solve the issue of deadlock prevention, however, it has own limitations. Some of the most important
limitations of transactional memory are, not allowing side-effects and the risk of starvation.

The trend of improving performance by multi-threading an application will certainly continue. A new locking
protocol and library for intra-process locking (that is locking within the same process memory space) is therefore
desirable. For this reason, we will introduce Inheritance Locks, a novel protocol which prevents deadlocks,
livelocks and starvation in the next chapter.

10

Chapter 3

Inheritance Locks

In the previous chapter we discussed related work and background information of locking protocols. We pointed
out that many locking protocols suffer the risk of deadlock or lead to starvation. In this chapter we will introduce
Inheritance Locks, a novel locking protocol which prevents deadlocks and starvation. We will provide examples
to illustrate the semantics of the protocol.

3.1 Origin

As discussed in Section 2.2.1, Havender [18] introduces a number of approaches to address the deadlock problem.
We will particularly focus on Approach 3 and show that it can lead to starvation. The approach states that if
a locking-request can not be satisfied right away (because the requested resource is locked by another process),
all resources held by the requesting process are pre-empted (that is, made available to be locked by any other
process) and the requesting process can only resume once the requested and the previously locked resources are
available. Let us illustrate this approach with an example using a wait-for graph.

(a) R1 is assigned to P2 (b) P2 requests R3. Therefore R1 is pre-
empted and assigned to P1

(c) Even after P4 releases R3, P2 can not
continue until R1 is available again.

Figure 3.1: Successive points in time (a),(b),(c) - Starvation in Havender’s Approach 3

Figure 3.1a shows a system with five processes and three resources. Resource R1 is assigned to process P2,
R2 is assigned to P3 and R3 to P4. The processes P1 and P5 are currently blocked, because they are waiting
for R1 and R2 respectively to become available. Let us now assume P2 reaches a critical section in which it
is required to additionally request R3 and later R2. Since R3 is currently assigned to P4, P2 has to wait and
becomes blocked. Therefore R1 gets pre-empted and assigned to P1. Figure 3.1b shows this situation. Next,
P4 releases R3, however, P2 can still not acquire R3 because the pre-empted resource R1 is still used by P1 as
illustrated in Figure 3.1c. It is easy to see that a similar situation will occur once P2 has successfully (re-)acquired

11

R1 and R3 and tries to lock R2. P2 can only enter the critical section iff R1, R2 and R3 are available at the same
time. However, since five processes are competing for the resources, there is no guarantee that this situation will
ever occur. The waiting time might become unacceptable, even if the situation eventually occurs. Hence, we can
conclude that in Havender’s Approach 3 starvation is possible.

3.2 Approach

As shown in the previous section, Havender’s Approach 3 can lead to starvation. We propose therefore Inheri-
tance Locking, an amendment of the approach which is free from starvation.

Definition 3.2.1. Informally: If a locking-request can not be satisfied right away, all resources held by the re-
questing process are pre-empted and assigned (inherited) to the process which is holding the requested resources.
Once the requested resource is unlocked all inherited resources are pre-empted and reassigned to the requesting
process.

Let us use the previous example, shown in Figure 3.1, to illustrate the improved behaviour of inheritance
locking. Let us assume that the initial situation, shown in Figure 3.1a, is the same.

(a) R1 is inherited by P4. (b) Once P4 releases R3, P2 holds both, R1

and R3.
(c) Because P2 requests R2, which is locked
by P3, R1 and R2 are inherited by P3.

Figure 3.2: No starvation in Inheritance Locks

Other than in Havender’s Approach 3, P1 will not be able to lock R1 once P2 becomes blocked, because R1

is inherited by P4 (Figure 3.2a). Once P4 releases R3, R1 will be reassigned to P2 and P2 will also be successful
in locking R3 (Figure 3.2b). P2 can then move on to request R2, currently held by P3, which means R1 and R3

will be inherited by P3 (Figure 3.2c).

3.3 Illustrative example

Since the definitions of the previous sections are fairly abstract we give an informal illustrative example in this
section in the hope that this clarifies how Havender’s Approach 3 differs from Inheritance Locks. Table 3.1 and
Figure 3.3 are provided to make the relation between the example and the locking protocols clearer.

Consider three friends, Alice, Bob and Charlie, who share a textbook, a pencil and a highlighter pen. In this
analogy Alice, Bob and Charlie are processes and the textbook, pencil and highlighter pen are resources which
can not be used by more than one person (process) at a time. Let’s consider the following sequence of events: (1)
Alice is reading the textbook (resource textbook allocated to process Alice), (2) Bob picks up the highlighter pen
and the pencil (process Bob locks resources highlighter pen and pencil) and (3) wishes to highlight passages in

12

Table 3.1: Illustrative example as table

(a) Havender’s Approach 3

Time
(1) (2) (3) (4) (5)

Textbook A A A A -
Highlighter - B - C C

Pencil - B - C C

(b) Inheritance Locks

Time
(1) (2) (3) (4) (5)

Textbook A A A A A
Highlighter - B B B A

Pencil - B B B B

the textbook (process Bob requests resource textbook) and take some private notes, (4) Charlie would like both
pens (process Charlie request resources highlighter pen and pencil) to go over his private notes, (5) finally Alice
wants the highlighter pen (process Alice request resource highlighter pen) to highlight a sentence that she just
read in the textbook.

Figure 3.3: Wait-For graph of illustrative ex-
ample in chronological order.

In Havender’s Approach 3, Bob puts away the pens in (3)(re-
sources highlighter pen and pencil are pre-empted from pro-
cess Bob, because the requested resource textbook is not avail-
able) and would only try to get them back once the textbook
becomes available. This means Charlie picks up the pens (pro-
cess Charlie acquires resources highlighter pen and pencil) and
works on his private notes in (4). Alice and Bob (process Alice is
blocked while waiting for resource highlighter pen, process Bob
is blocked while waiting for resources highlighter pen and pen-
cil) have to wait for Charlie in (5) to finish his work before Alice
could pick the textbook up again and highlight her sentence.

In particular Bob suffers from starvation in this approach be-
cause he wants all resources and can only continue iff all of them
are available at the same time. It also feels counter-intuitive why
Bob puts the pens away (3) if the textbook is not immediately
available. Let us now observe what happens in this scenario if the
Inheritance Locking Protocol is used instead.

Bob does not put down the pens in (3) and Charlie has to wait
(process Charlie becomes blocked while waiting for resources
highlighter pen and pencil to become available) for Bob in (4). In
(5) Bob lends the highlighter pen to Alice (resource highlighter
pen inherited by process Alice) as she is having the textbook that
Bob is waiting for. In fact, Bob is smart enough to see that if he
would not lend Alice the highlighter pen, Alice would not give
up the textbook meaning they are in a deadlocked situation. Intu-
itively, Inheritance Locking enforces reasonable and fair resource
handling while preventing deadlocks from occurring.

3.4 Definition using Graph Theory

In this section we will refine and improve the definition of in-
heritance locking (Definition 3.2.1) using graph theory. Directed
graphs can be used to describe wait-for graphs. We will therefore

13

use directed graphs to define inheritance locks. These results will
give a clear formal definition which will be used throughout this
report. For completeness, we will first give a definition of graph
theory terminology, in particular of directed graphs.

(a) Sink (outdegree = 0). (b) Internal node (indegree = 2, outdegree =
3)

(c) Source (indegree = 0).

Figure 3.4: In/Out-Degree examples in a directed graph

3.4.1 Directed Graphs

A directed graph G = (N,E) consists of a set of nodes (sometimes called vertices) N and a set of directed
edges E such that each edge goes from one particular node to another E ⊆ N ×N (self-referencing is possible).
The outdegree, denoted by deg+(n), of a node n is the sum of outgoing edges from n. Formally

deg+(n) =

N∑
v=n1

(e|e ∈ E ∧ e = (n, v))

The indegree, denoted by deg−(n), of a node n is the sum of ingoing edges to n. Formally

deg−(n) =
N∑

v=n1

(e|e ∈ E ∧ e = (v, n))

A node n with no outgoing edges deg+(n) = 0 is called sink. A node n with no ingoing edges deg−(n) = 0 is
called source. A node that is neither a sink nor a source is called an internal node.

A path is a sequence of edges such that each subsequent edge starts at the node where the previous edge
ended. An directed acyclic graph (DAG) is a graph in which there is no path such that it visits a node twice.

(a) Path in a directed graph (b) Acyclic directed graph (c) Cyclic directed graph

Figure 3.5: Paths and cycles in a directed graph

14

(a) Graph with two components (b) Tree (c) Forest

Figure 3.6: Components and trees in graph theory

A graph consists of two or more components if there are two nodes which can not be connected by a path. A
directed acyclic graph is called tree if each node has an indegree of exactly one, except for one node which is a
source and is called the root node. All edges in a tree show a parent-child relation such that the outgoing node
is the parent of the ingoing node. In Figure 3.6b node x is the parent of node y. A directed acyclic graph with
several trees is called a forest. In a forest one to all nodes can be a root node (source). Each tree is a separate
graph component.

3.4.2 Relation to Inheritance Locks

Using the definitions from the previous subsection we will now define inheritance locks as a forest of transpose
trees in the wait-for graph. We will first define the term transpose tree and then the properties of inheritance
locks using the former.

Definition 3.4.1. A transpose tree is a tree with each edge reversed (sometimes called converse graph). In
particular each edge goes from a child node to a parent node. A root node is a sink, every other node n has an
outdegree of 1: deg+(n) = 1. All other basic properties of a tree are preserved. Figure 3.7 shows an example of
a transpose tree.

Figure 3.7: Transpose Tree

Note: For the rest of this report we will use the term tree if we mean a transpose tree, unless specifically
stated otherwise.

15

(a) R1 is available, R2 is assigned to P1, P3

is blocked while waiting for R2, P1 and P2

are running.

(b) Not allowed, edge
from resource to
resource.

(c) Not allowed, edge from
process to process.

Figure 3.8: Inheritance Locks - Graph examples

Let the graph G = (N,E) consist of a set of processes P and a set of resources R. Let the nodes of the
graph be N = P ∪ R and the directed edges be E ⊂ ((P × R) ∪ (R × P)) (Figure 3.8). An edge e = (p, r)
means that process p is waiting for resource r to become available (wait-for relation). An edge e = (r, p)
means that resource r is assigned to process p (assigned-to relation). Each node in N can have an outdegree of
0 or 1 (deg+(n) = 0 ∨ 1, n ∈ N). A process with an outgoing edge is blocked while waiting for a resource.
A process with no outgoing edge is running. A resource with an outgoing edge is assigned to a process. A
resource with no outgoing edge is available. No process can wait for a resource if the resource is available
deg+(r) = 0 ⇒ deg−(r) = 0 ∧ deg−(r) > 0 ⇒ deg+(r) = 1, r ∈ R; in other words if a resource node has
children, it has to have a parent (Figure 3.9).

(a) (b)

Figure 3.9: A resource node must have a parent if it has children.

Let us now consider the locking request of inheritance locks. There are three possible scenarios if a process
p wishes to lock a resource r: If r is available (deg+(r) = 0), r can be directly assigned to p with an edge
e = (r, p) (Figure 3.10a). If r is not available (deg+(r) = 1), the root node of r can either be p or different to p.
If root(r) = p, r has been assigned to p (directly or indirectly through inheritance) and p can continue (Figure
3.10b). If root(r) 6= p (Figure 3.10c), p becomes blocked and has to wait for r to become available(e = (p, r)),
meaning p is added to the tree of root(r).

16

(a) R1 is available. (b) P1 has inherited R1. (c) P1 will have to wait for R1 to become
available.

Figure 3.10: P1 wishes to lock R1, three scenarios are possible.

Figure 3.11: Conveyor Resource - R2 makes R1 and R3 available for P1

The release phase of inheritance locks is of specific concern, because a resource r should only be unlocked
iff all resource children of r are unlocked too. That is, if inherited resources are still in use, unlocking a resource
which made the inherited resource available (we call this the conveyor resource, Figure 3.11) should not be
possible. Note that locking and unlocking inherited resources does not have an effect on the wait-for graph.

An easy solution for this issue is to enforce that locking and unlocking is done in a stack fashion (Last-In-
First-Out). For example, if a process P1 locks, in this order, resources R2, R1 and R3, it has first to unlock R3

then R1 and eventually R2. Because inherited resources can only be locked after the conveyor resource has been
locked, locking in this fashion ensures that all inherited resources are unlocked before the respective conveyor
resource is unlocked (Figure 3.12). Alternative of approaches of unlocking are possible which we will discuss in
Chapter 8.

17

Figure 3.12: Resource stack of process P1

Since each node can have an outdegree of 0 or 1 and at each locking request it is checked whether the root
of the resource’s component corresponds to the requesting process, it is a fairly obvious that this kind of locking
leads to a forest in the graph. Cycles are therefore not possible. Using the work by Coffman et al. [5], introduced
in Subsection 2.2.4, we can conclude that deadlock is prevented since pre-emption is partially allowed and, more
importantly, circular wait is not possible. We will omit a formal proof of deadlock and starvation prevention.

In this chapter we have introduced a novel locking protocol, Inheritance Locking, which prevents deadlock
and starvation. To the best of our knowledge, this protocol has not been proposed before. In the next chapter we
will verify the correctness of inheritance locks using the SPIN model checker.

18

Chapter 4

SPIN Model Checking

In the previous chapter we introduced a novel locking protocol, Inheritance Locking, which we claim prevents
deadlock and starvation. In this chapter we will initially verify the correctness of this protocol using the SPIN
(Simple Promela Interpreter) model checker. SPIN is a popular tool for detecting software defects in concurrent
system designs using properties expressed as Linear temporal logic (LTL) [21]. LTL allows properties which are
time constraint such as, eventually s holds, t holds until u holds etc. This makes SPIN very suitable for testing
a locking protocol. Models for SPIN are typically written in the Promela (Process Meta Language) verification
modelling language.

4.1 Model design

SPIN creates a state space to check all possible routes of a concrete model, that is, for model x check that
properties y and z hold. Unfortunately, it is not straightforward to verify properties which should hold in any
arbitrary model. Therefore, it was not possible to efficiently create a model which would verify inheritance locks
with any number of threads and any number of locks. Hence, we decided to run model checks against a range of
threads and locks instead. In particular, for each specific number of threads and locks a separate model had to be
created and verified by the SPIN model checker.

For the model creation we implemented a program in Haskell which generates the Promela model for a
number of threads and locks given as arguments to the program. For the number of locks, a nested part of the
model had to be created. The number of threads, on the other hand, just required a change of a global constant
in the model.

Figure 4.1: SPIN model

19

The model itself consists of three process types. An init process which initialises the variables and processes,
a thread process which randomly locks and unlocks resources in a stack fashion and a controller process which
manages a wait-for graph representation and handles locking and unlocking requests from thread processes.
Locking and unlocking requests from a thread can be made by placing an according message on an acquire and
release channel respectively. The controller process reads from the acquire and release channels, processes the
request and if the request was successful answers with an acknowledge message to the according thread. Figure
4.1 shows the model as a diagram.

4.2 Properties

The model had to be verified for two properties, mutual exclusion and progress. We checked the mutual exclusive
property by using a variable, named critical, which is incremented every time a thread locks resource number
1 and decremented once it is unlocked or the holding thread blocks. An LTL property was used to check that
critical can only be 0 or 1, meaning that no more than one thread is in the critical section.

We checked the progress property by placing a label on top of the thread loop called label thread. Using an
LTL property we could define that the first thread should eventually always make it back to the label, meaning
that there are no deadlocks or starvation in the system. It is sufficient to check this property with a single thread
as all threads execute identical code. Therefore, if the property hold for one thread, it holds for all of them. We
had to enable weak fairness in order for this property to be verified. Weak fairness means that a thread should
eventually run if it is constantly ready to run. That is, a non-blocked thread should eventually get some processor
time so that it can progress. We checked with models of the range 2 to 10 threads and 1 to 10 locks as shown in
Table 4.1.

Figure 4.2 shows the actual LTL properties as described. p is true when thread p1 is at the label label thread.
q is true iff the variable critical is equal to 0 or 1. property1 says that it should always be the case that, p is
eventually true and q is true.

#define p (thread[p1]@label_thread)
#define q (critical == 0 || critical == 1)

ltl property1 {[]((<>p) && q)}

Figure 4.2: LTL Properties

4.3 Setup

Because the runtime of the verification grows exponentially in relation to the number of locks and threads,
running the verification on a single machine was not suitable. Therefore, we designed the verification to be
run on several machines in the Computer Science Lab during the Christmas Holidays. In particular, we wrote
a script login.exp (Appendix A.1) in expect, an extension to the Tcl scripting language [29], to log in to a
machine via secure shell (SSH), create a directory for this machine, copy all relevant files into the directory and
run a number of verification tests for a given number of locks. In particular, each machine would first verify
the range [2-10] threads with the number of specified locks. Then, every machine would verify the range [2-10]
threads with [1-3] locks. This work was done by the remoteArchive.sh shell script (Appendix A.2) using
the ”nohup &” command. The nohup command can be used to start execution of a program that should not be
terminated if the shell gets closed, meaning that the expect script could logout of SSH once the execution was

20

started. The expect script itself would be started by a shell script, runExpect.sh (Appendix A.3), which
takes as arguments a password, the prefix of the room and the number of machines in the room. This shell script
ensured that each verification was run at least three times as a backup and consistency check. Taken together,
this means 21 machines had to run verifications, in particular Table 4.1 shows how often each verification was
planned to be run.

Table 4.1: Scheduled number of verifications

Threads
2 3 4 5 6 7 8 9 10

L
oc

ks

1 21 21 21 21 21 21 21 21 21
2 21 21 21 21 21 21 21 21 21
3 21 21 21 21 21 21 21 21 21
4 3 3 3 3 3 3 3 3 3
5 3 3 3 3 3 3 3 3 3
6 3 3 3 3 3 3 3 3 3
7 3 3 3 3 3 3 3 3 3
8 3 3 3 3 3 3 3 3 3
9 3 3 3 3 3 3 3 3 3
10 3 3 3 3 3 3 3 3 3

It was expected, that the verification of the range [1-3] locks would be executed relative quickly regardless
of the number of threads. For simplicity every of the 21 machines was therefore scheduled to check this range
after checking the range [2-10] threads with the uniquely specified number of locks. This meant, fewer machines
were needed and the script could be kept simple for the cost of running more verifications than necessary on the
range [1-3] locks.

The verifications were scheduled to be run using high compression as the amount of memory on the machines
was a limiting factor. Using a higher compression rate meant having a trade-off between space and time. Table
4.2 shows the technical properties of the machines.

Table 4.2: Machine details

Memory 3.6 GiB
Processor Intel Core i5-3470 CPU @ 3.20GHz x 4

OS CentOS Linux 7 - 64-bit
Graphics Intel Ivybirdge Desktop
GNOME Version 3.14.2

Disk 115.8 GB

4.4 Results

We could verify a number of models using the described setup. Table 4.3 shows how often each (lock, thread)
pair could be verified. Each table cell also indicates, in brackets, how many seconds on average the verification
took. No verification failed. Note that Table 4.3 is directly related to Table 4.1.

Unfortunately, many verifications could not finish as machines’ memories were exhausted and we had to
abort execution on a number of machines which had not finished after approximately 10 days, because the lab
machines had to be used by returning students. Given more time and machines with more memory space, we

21

claim that even more models could have been verified. However, much more memory space would be needed to
verify the entire matrix.

Even though not every model could be verified, all models had been attempted to be verified at least once
and all finished verifications were positive. These results therefore clearly suggest that inheritance locks prevent
deadlock and starvation while preserving mutual exclusion.

Table 4.3: Number of verifications (average runtime in seconds)

Threads
2 3 4 5 6 7 8 9 10

L
oc

ks

1 9 (0.003) 7 (0.08) 6 (1.542) 5 (26.68) N/A N/A N/A N/A N/A
2 7 (0.06) 7 (3.186) 6 (140.5) 6 (151000) N/A N/A N/A N/A N/A
3 7 (0.541) 6 (53.517) 5 (211800) N/A N/A N/A N/A N/A N/A
4 2 (4.275) 2 (869500) N/A N/A N/A N/A N/A N/A N/A
5 2 (41.9) N/A N/A N/A N/A N/A N/A N/A N/A
6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
8 N/A N/A N/A N/A N/A N/A N/A N/A N/A
9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

10 N/A N/A N/A N/A N/A N/A N/A N/A N/A

In this chapter we presented a Promela model for the inheritance locking protocol. Using SPIN, we verified
many instances of the model on a computer cluster with the results clearly supporting our hypothesis that In-
heritance Locks prevent deadlock and starvation while preserving mutual exclusion. In the next chapter we will
present an implementation of inheritance locks in the C programming language.

22

Chapter 5

Inheritance Lock Library

In the previous two chapters we introduced inheritance locks, a novel locking protocol. We claimed that the
protocol is free of deadlock and starvation while preserving mutual exclusion and supported this hypothesis with
the results of checking the protocol with the SPIN model checker.

In this chapter we present an implementation of inheritance locks in the C programming language. We
will first introduce aims and justify design decisions in Sections 5.1 and 5.2 respectively. In Section 5.3 we
introduce the Application Programming Interface (API) of the library and in Section 5.4 we present the library
implementation using high level pseudo code.

5.1 Aims

The aim of implementing inheritance locks was mostly of experimental nature. We wanted to show that the
inheritance locking protocol can be implemented and has advantages over other well established locking methods.
We did not aim to optimise the library. However, we were careful to avoid highly complex algorithms to keep
running times reasonable. We are aware of many optimisation possibilities of the protocol which we will discuss
in Chapter 8.

5.2 Design decisions

The C programming language was chosen for the implementation of the library as it is a well established, popular
and cross-platform language. C++ is fully downward compatible to C, so C source code can be directly used in
C++ code. That means the library can be used by a wider audiance. The TIOBE index, which is often used to
identify the popularity of a programming language, lists C and C++ constantly among the top five programming
languages over the last decade [49].

C gives much freedom to experiment and directly implement ideas without complications. This is because
C is a weakly typed, fairly low-level language and it does not require a virtual machine or similar capabilities to
run. This property allows reliable and reproducible performance measurements too.

The implementation is based on the POSIX standard, in particular POSIX Threads (pthreads), as this standard
is widely established and supported by most operating systems. It also means that benchmark tests could be run
against pthread mutexes (Chapter 6 and 7).

23

The GNU Compiler Collection (GCC) was used for compilation for a number of reasons. Firstly, it is a widely
used and well established compiler meaning that performance tests should be easily reproducible. Secondly, GCC
has a native support for transactional memory which we used in benchmark tests as shown in Chapter 6. The
-O3 optimisation flag was used for compilation to improve performance of the library.

5.3 API

We aimed to keep the Application Programming Interface (API) as easy and straightforward as possible. The
entire API of the library is bundled in a single header file, inheritance lock api.h (Appendix B.1), which
declares the generic INHERIT LOCK type as a void pointer as well as the following five functions:

• INHERIT LOCK create lock(INHERIT LOCK*); Creates a new inheritance lock.

• INHERIT LOCK create rec lock(INHERIT LOCK*); Creates a new recursive inheritance lock
(can be locked more than once by the same thread).

• int acquire(INHERIT LOCK); Calling thread tries to acquire the inheritance lock.

• int release(INHERIT LOCK); Calling thread tries to release the inheritance lock.

• int destroy lock(INHERIT LOCK*); Destroys an inheritance lock.

To use the library, the programmer has to include this header file and link to the inheritance lock.o file
and to pthreads with the -lpthread flag.

5.4 Implementation

In this section we will present the basic implementation of the library using pseudo code. We will only present
the code for the acquire and release functions here as they correspond to the core logic of inheritance locking.
In subsection 3.4.2 we discussed the relation between inheritance locks and directed acyclic graphs (DAG).
The pseudo code largely reflects this relation. Moreover, it is important to notice, that no two threads should
modify the wait-for graph at the same time as this could cause a race condition. The implementation therefore
uses a global pthread mutex, called graphLock, to grant mutual exclusive access for the wait-for graph. The
graphLock is guaranteed not to be prone to deadlock, because no further pthread mutexes are locked inside the
critical section. As shown in Chapter 6 and discussed in Chapter 8 the graphLock is a bottleneck of the library,
though. The stack of held locks for each thread is an array of fixed size and can hold up to 32 locks. If the thread
acquires more locks than the array can hold, a dynamic stack, implemented as a doubly linked list, is used for all
locks past the threshold of 32. Using the static stack (the array) is faster than the dynamic stack as the array is
more likely to reside on the same memory page and the risk of a page fault (which would slow down execution)
is therefore reduced. As shown by Permandla et al. [41], in a typical application there are no nested critical
sections of a depth greater than four. It is therefore highly unlikely that the dynamic stack needs to be used in
an ordinary application. The interested reader is advised to read the source code of inheritance lock.c
directly.

24

Algorithm 1 Acquire algorithm called by thread to acquire lock

1: function acquire(lock) . thread can be obtained through the thread id.
2: root = rootOf(lock)
3: if lock.recursive = False ∧thread.inStack(lock) then
4: return False . Prevent acquiring a non-recursive lock more than once.
5: end if
6: if lock =Sink then . lock is available.
7: thread.pushOnStack(lock)
8: lock.parent = thread
9: return True

10: else if root = thread then . thread has inherited lock.
11: thread.pushOnStack(lock)
12: return True
13: else . thread has to wait for lock.
14: thread.parent = lock
15: waitFor(lock) . thread will hold lock when this call returns.
16: return True
17: end if
18: end function

Algorithm 1 shows the semantics of the acquire1 function. thread and lock are ordinary C structures
which hold all necessary information. The data of the thread, thread, is obtained by using the POSIX function
pthread getspecific() which loads thread specific memory of the calling thread. It is therefore vital that
pthreads are used for threading when the inheritance lock library is used. The source code of the acquire function
can be found in Appendix B.2.

In the first step, the root of the lock node is ascertained (remember threads and locks are nodes in a DAG
forest). In line 3 it is checked whether the lock is non-recursive (that is, it is not allowed to acquire this lock
more than once per thread) and if so, whether the thread has previously acquired this lock. If this is the case the
function call was not permitted and therefore returned with False. Otherwise there are three possible scenarios
as discussed in Chapter 3 (see Figure 3.10). In the first scenario, the lock is available. That is, it does not have a
parent and is therefore a sink. In the second scenario (line 10) the root of the lock’s tree is the requesting thread
itself. The thread has therefore inherited the lock. In the third and final scenario (line 13), the lock is neither
available nor inherited by the thread. That means the thread has to wait for the lock to become available. In
particular, the lock becomes the thread’s parent so that the root of the tree inherits all locks currently held by the
thread. As we will see in Algorithm 2, the lock will be automatically assigned to a waiting thread by the thread
that is releasing the lock. Therefore, when the call to waitFor() (line 15) returns, the thread will hold the lock.

Algorithm 2 shows the logic of the release function. A waiting thread is woken up using a POSIX
condition variable. Note that a lock can only be released if it is on top of the thread’s lock stack. The source code
of the internal release function which corresponds to the pseudo code can also be found in Appendix B.3.

First of all, a lock that is not on top of the thread’s stack can not be released (line 2) as discussed in Chapter
3, Subsection 3.4.2 (see Figure 3.12). Otherwise, we can pop the lock from the stack. If the parent node of the
lock is not the thread, the thread has inherited the lock and no modifications to the graph should be made (as
noted in Subsection 3.4.2). Otherwise we check if there is another thread waiting for the lock (line 9-10). If this
is not the case, the lock should be turned back into a sink (no parent) meaning that the lock is available (line 11).
If there is another thread waiting for the lock we can turn the waiting thread into a sink (which shows that the

1Note: We use the type set font to indicate bits from the C source code (Appendix B) and italics to indicate bits from pseudo
code. However, sometimes the names correspond to both, source and pseudo code, in which case the type setting is chosen by context.

25

Algorithm 2 Release algorithm called by thread to release lock

1: function release(lock) . thread can be obtained through the thread id.
2: if lock 6= thread.topOfStack() then
3: return False . Only allow release of locks in LIFO fashion.
4: end if
5: popStack(thread)
6: if lock.parent 6= thread then . thread has inherited lock
7: return True
8: end if
9: next = lock.dequeueWaitqueue()

10: if next =NONE then
11: lock.parent =NONE
12: else . Another thread is waiting for lock
13: next.parent =NONE
14: lock.parent = next
15: next.pushOnStack(lock)
16: wakeup(next)
17: end if
18: return True
19: end function

thread is running, Figure 2.3c), allocate the lock to that thread, push the lock on the stack of the waiting thread
and eventually wake the waiting thread up to continue in Algorithm 1, line 15.

In this chapter, we presented an implementation of the inheritance locking protocol using the C programming
language. We discussed aims, design decisions, the API and some implementation details of the library using
high-level pseudo code. In the next chapter we present two benchmarks that we wrote to evaluate locking proto-
cols. We used this benchmark suite to test the introduced inheritance lock library against other well established
locking protocols.

26

Chapter 6

Benchmarks

In the previous chapter we presented an implementation of inheritance locks as a C library. In this chapter we
introduce benchmark tests that we used to evaluate locking protocols against deadlock and starvation as well as
testing performance of a protocol.

Correctness and performance testing is of importance, because only protocols that have been shown to be
correct and reasonably powerful will be used for production. Typically, established benchmarks from other
researchers are used to reliably compare results with the outcome of previous work in the field. Therefore, we
intensively researched various benchmark suites, however, we struggled to find a benchmark fit for our purpose.
We made out three main issues with existing benchmark suites. Firstly, for many benchmark tests the source
code was not freely available or not up to date. Similarly, if the source code was available it was often poorly
documented and unclear how to use the benchmark. Finally, many benchmark tests were too specialised for a
specific purpose. For example, the Varro benchmark uses model transformations for the test suite [50, 14], the
STAMP benchmark is specialised for transactional memory applications [33].

Given these outlined issues, we decided to write our own benchmarks to test the implementation of inheri-
tance locks against other, well established, locking protocols. In particular, we wanted to check whether deadlock
or starvation is possible in a given locking protocol and we wanted to measure performance of a given protocol.
The protocols that we wanted to test with our benchmark tests were pthread mutexes, C++ mutexes, transactional
memory (supported natively in GCC with the -fgnu-tm flag) and inheritance locks.

6.1 Micro benchmark

The micro benchmark was written to produce clear and reproducible results. In particular, the benchmark per-
forms two simple performance tests and two further tests for deadlock and starvation of the locking protocol.

6.1.1 Methods and design

Details of the locking protocol had to be given to the benchmark through the benchmark.h header file as pre-
processor definitions. These definitions were then replaced by the pre-processor in the benchmark source code
to perform library calls at the according places. Eventually, an individual executable per protocol was produced
by linking the benchmark object file with the according libraries. Besides the obvious calls to the locking library,
such as lock() and unlock(), the threading library calls also had to be defined in the benchmark.h
header file. This was because certain locking libraries might require a specific threading library in order to work

27

correctly. For example, inheritance locks only work with pthreads while C++ mutexes should be used with C++
threads.

The tests performed by the benchmark were in this order:

• Performance test of a single thread: locking and afterwards unlocking 105 locks in stack fashion.

• Performance test of a single thread: locking and unlocking a single lock 105 times.

• Produce a deadlock by making two threads waiting for a lock held by the other one.

• Produce starvation by making three threads compete for two resources, such that the third thread is likely
to starve.

Figure 6.1: Deadlock and starvation are mutually exclusive

The results are given on standard output. If a test fails (in particular tests three and four), the failure is
reported and the benchmark aborted. Deadlock occurs if the used locking protocol is too strong, that is locks will
in no circumstance be pre-empted. On the other hand, the locking protocol is too weak if starvation occurs, that
is locks will always be pre-empted or rolled back and a thread might struggle to make progress. Deadlock and
starvation are therefore mutual exclusive as Figure 6.1 shows. If a locking protocol suffers from deadlock, it can
not suffer from starvation. However, this is only true in locking protocols which enforce a FIFO wait queue for
all threads waiting for a lock. For this reason we ran test four individually if test three had failed for a protocol.

28

Figure 6.2: Micro Benchmark - Test 3 Deadlock

The first and second tests are self-explanatory. The third test (deadlock) was designed as sketched in Figure
6.2. In particular, if the protocol deadlocks the master and slave threads will be stuck in the states indicated
with hourglasses. If the master thread does not return within a predefined timeout, the protocol is assumed to be
deadlocked and the benchmark test is aborted.

For the fourth test three threads, Master, Partner and Slave, were created. As shown in Figure 6.3 the Master
and Partner threads take indefinitely turns in unlocking and locking lock A and B respectively. This procedure
is only stopped if the Slave thread successfully locks and unlocks both locks at the same time. Note that by
design lock A and B are never available at the same time. That means if the protocol can not prevent starvation,
thread Slave will never be able to finish (because the thread can not hold and wait) and therefore starve. If the
Master thread does not return within a predefined timeout, the protocol is assumed to suffer from starvation and
the benchmark test is aborted.

29

Figure 6.3: Micro Benchmark - Test 4 Starvation

Transactional memory can not be tested with the micro benchmark, because a transactional memory scoped
block does not allow side effects inside of it. A side effect is any kind of operation which can not easily be
undone or redone. In particular, for the third and fourth test (deadlock and starvation) it was necessary to put
threads into sleep for certain times in order to accomplished the wanted scenario. Putting a thread into sleep is
considered a side effect and is therefore not allowed in a transactional memory block. To address this issues we
wrote the Tyche Benchmark which we introduce in the next section.

The Micro benchmark test was run against pthread mutexes, C++ mutexes and inheritance locks. Each case
was run 100 times and the arithmetic mean time was taken (excluding negative times which were occasionally
reported). Details of the used machine can be found in Table 4.2. We ran the benchmark tests with both,
optimisation disabled and with optimisation enabled using the -O3 flag.

6.1.2 Results

The test results of the runs with optimisation disabled can be found in Table 6.1 and the results with optimisation
enabled, using the -O3 flag, in Table 6.2.

Table 6.1: Micro benchmark test results (no optimisation)

pthreads C++ Inheritance Locks
Test 1 - Average runtime in ms 3.64 (σ = 0.80) 2.92 (σ = 0.58) 14.46 (σ = 3.65)
Test 2 - Average runtime in ms 2.36 (σ = 0.49) 2.85 (σ = 0.60) 5.42 (σ = 1.35)

Test 3 - Free from deadlock N N Y
Test 4 - Free from starvation N N Y

30

Table 6.2: Micro benchmark test results (optimised with -O3)

pthreads C++ Inheritance Locks
Test 1 - Average runtime in ms 3.37 (σ = 0.70) 1.96 (σ = 0.43) 14.78 (σ = 3.50)
Test 2 - Average runtime in ms 2.24 (σ = 0.49) 2.35 (σ = 0.53) 5.20 (σ = 1.13)

Test 3 - Free from deadlock N N Y
Test 4 - Free from starvation N N Y

On average the C++ mutexes were the fastest option in the first benchmark test and pthread mutexes the
fastest option in the second benchmark test. Inheritance locks were constantly slower than pthread mutexes or
C++ mutexes. Pthread and C++ mutexes were found to be prone to deadlock. Furthermore, pthread and C++
mutexes were found to be prone to starvation. This is because waiting threads (i.e. the slave thread) are woken up,
that is placed in the ready queue, once the corresponding mutex is unlocked, however, the mutex will be locked
on a first come, first served basis [15]. Since the unlocking thread (master or partner) is usually still running, it
is highly likely that it will be successful in reacquiring the lock. Hence, the woken thread will fail in acquiring
the lock and becomes blocked again; ergo starvation is possible. This recorded behaviour in pthread and C++
mutexes can decrease performance as the convey phenomenon shows [4]. Inheritance locks were found to be
free from deadlock and starvation.

6.1.3 Discussion

It was to be expected that C++ and pthread mutexes would deliver similar runtimes. It is also not surprising
that inheritance locks were found to be slower as the library requires for each request on average a locking and
unlocking request of a pthread mutex, graphLock, in order to lock and unlock the wait-for graph as discussed
in Chapter 5. Pthread mutexes are therefore at least twice as fast as inheritance locks. Additionally to locking
and unlocking the graphLock for the wait-for graph, the inheritance lock library has to perform a number of
protocol specific calculations to ensure correct behaviour. The experienced slowdown is therefore reasonable. In
Chapter 8 we discuss options which could speed the inheritance lock library up.

6.2 Tyche benchmark

Since the Micro Benchmark, introduced in the previous section, can not be used with transactional memory,
we decided to develop another benchmark which firstly, can be run with transactional memory and secondly,
allows a high degree of randomisation. The high degree of randomisation was of importance to account for a
great variety of scenarios, even though this decreases reproducibility. The name Tyche Benchmark was chosen
to reflect this characteristic. Tyche is a patron for fortune, luck and destiny in ancient Greek mythology.

6.2.1 Methods and design

The tyche benchmark uses a header file, benchmark.h, to define the locking and threading libraries. This
pre-processing approach is equivalent to the micro benchmark as introduced in the first paragraph of Subsection
6.1.1.

Three parameters can be given to the tyche benchmark, a seed for the random function, the maximum number
of threads and the maximum number of locks. The seed for the random function is set only once at the beginning
of the program. The seed can be given as a program parameter to achieve higher reproducibility. Otherwise,

31

the current time is used as the default seed (the default should be used for all experiments). The maximum
number of threads defines the upper bound of the range of which a random number of threads is chosen from
(numberOfThreads = random(range(1,maxThreads))). Equally the maximum number of locks defines
the upper bound of the random range for the number of locks in the program.

Each lock is embedded in an individual data structure. This data structure consists of the lock, which can be
acquired and released by the corresponding locking library, and a data field that is increased by two after each
locking request and decreased by one before each unlocking request. The data field is necessary for two reasons.
Firstly, it ensures that the transactional memory library behaves in the same way as a conventional locking library
(that is, the data is consistent between locking and unlocking) and secondly, it allows to check how often each
lock has been acquired by all threads combined at the end of a test.

Collatz Conjecture In the core of the algorithm we make intensive use of Collatz conjecture. The conjecture
says that, given any positive number greater than one; if the number is divided by two if it is even or multiplied
by three and incremented by one if it is odd, the number will become one after repeating this step for a number
of times. Formally:

f(n) =


1 if n <= 1

n/2 else if n mod 2 ≡ 0

n3 + 1 else if n mod 2 ≡ 1

Sequence of Collatz conjecture:

ai =

{
n for i = 0

f(ai−1) for i > 0

Example. Collatz conjecture of 7:
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

The spread between even and odd numbers for any given progression is on average even, but the occurrence of
even and odd numbers in the sequence is semi-random. The longest progression for any given starting number in
a range of numbers is well known [10, 2] (for example: The starting number 9780657631 takes 1132 steps until
it reaches one which is the longest progression for any given starting number less than 10 billion).

Algorithm 3 shows how Collatz conjecture is used in the tyche benchmark. Each thread uses a random seed
for an individual Collatz conjecture from the range (1, 1000). The longest possible progression in this range is
871 with 178 steps. A thread can therefore lock at most 178 locks before it terminates. If the current number
is not divisible by three, a new semi-random lock is locked and added to a local saved (i.e. thread specific)
stack (line 4-8). 178 random values are pre-evaluated and delivered in sRandom(). This is because the random
function has side effects and is therefore not allowed in a transactional block. On average more locks are acquired
than released (two out of three times). This greedy behaviour increases competition for locks between threads
and makes deadlock and starvation more likely.

We decided to run the tyche benchmark with inheritance locks and transactional memory. We also tried to
run the benchmark test against pthread and C++ mutexes, however, as expected they deadlocked immediately.
We wanted to test a wide range of parameters. In particular, we chose to run tests against (maximal) 5, 10, 15,
25 and 50 locks. For each of these tests we ran with (maximal) 10 to 100 threads in incremental steps of 10. We
ran each particular parameter setting 1000 times. This means we ran in total 105 tests (2 locking systems x 5
lock numbers x 10 thread numbers x 1000 runs per setting). Furthermore, we initially experienced performance

32

Algorithm 3 Core of the Tyche Benchmark

1: c = random(range(1, 1000))
2: BEGIN TRANSACTION
3: while c 6= 1 do
4: if c not divisible by 3 then
5: target = sRandom()
6: stack.push(dataStructure[target])
7: lock(dataStructure[target].lock)
8: dataStrucutre[target].data← dataStructure[target].data+ 2
9: else if stack.notEmpty() then

10: target = stack.pop()
11: target.data← target.data− 1
12: unlock(target.lock)
13: end if
14: c = nextCollatz(c)
15: end while
16: while stack.notEmpty() do
17: target = stack.pop()
18: target.data← target.data− 1
19: unlock(target.lock)
20: end while
21: END TRANSACTION

differences which seemed to depend on processor load, heat and ultimately processing speed. To address this
issue we wrote a bash script which evenly fragmented the test runs in order to evenly spread the processor load
between the different test runs. Details of the used machine can be found in Table 4.2. Appendix C contains the
used scripts. All test were run on executables which were compiled with optimisation enabled (-O3).

6.2.2 Results

The total execution time of all benchmark tests combined was just over 26 minutes. The results of the tests are
shown in Figure 6.4 using box plots. The box indicates the second and third quartiles separated by the median.
The lower and upper whiskers indicate the 2nd and 98th percentiles. In each graph the number of the maximal
locks is fixed as indicated. The X-axis indicates the number of maximal threads, the Y-axis indicates the runtime
in milliseconds. The blue plots (dashed, left hand side) indicate transactional memory, the red ones (solid, right
hand side) inheritance locks.

The figures clearly suggest that inheritance locks are on average faster than transactional memory. In the
worst case (upper whisker), inheritance locks are always faster than transactional memory. In the best case
(lower whisker), inheritance locks and transactional memory are similarly fast. On the other hand, a t-test which
was run on a number of the result sets could not determine a difference of statistical significance between the
experiment groups.

6.2.3 Discussion

It is difficult to justify the slow down of the integrated GCC transactional memory compared to inheritance locks
without deeper knowledge of the transactional memory implementation. However, the most likely reason for the
slow down is starvation which can occur in transactional memory as pointed out by Herlihy and Moss [19].

33

The better performance of inheritance locks compared to transactional memory makes inheritance locks a
feasible alternative to well established locking protocols.

In this chapter we discussed two benchmarks which we used for evaluation of inheritance locks and for
comparison against other well established locking protocols. Our results show that inheritance locks are fit for
purpose and achieve partially better results than conventional locking approaches. In the next chapter we present
the results of macro-benchmarks, that is, running real world and widely used applications with inheritance locks
rather than conventional locks.

34

20 40 60 80 100

0

2

4

6

Max. thread. TM, Inheritance Locks

Ti
m

e
ne

ed
ed

[m
s]

(a) Max 5 locks

20 40 60 80 100

0

2

4

6

Max. thread. TM, Inheritance Locks

Ti
m

e
ne

ed
ed

[m
s]

(b) Max 10 locks

20 40 60 80 100

0

2

4

6

Max. thread. TM, Inheritance Locks

Ti
m

e
ne

ed
ed

[m
s]

(c) Max 15 locks

20 40 60 80 100

0

2

4

6

Max. thread. TM, Inheritance Locks

Ti
m

e
ne

ed
ed

[m
s]

(d) Max 25 locks

20 40 60 80 100

0

2

4

6

Max. thread. TM, Inheritance Locks

Ti
m

e
ne

ed
ed

[m
s]

(e) Max 50 locks

Figure 6.4: Tyche Benchmark - Runtime results

35

Chapter 7

Application stress test

In the previous chapter we introduce two benchmarks that we used for evaluating inheritance locks and compare
various locking protocols. However, the validity of the benchmark results is to some extent limited, because
benchmark tests do not necessarily correspond to common usage of a locking protocol. For this reason, we
wrote a shared library, libInheritPthread.so which is a wrapper library for the inheritance lock library
(introduced in Chapter 5). It interposes calls to pthread mutexes and redirects those calls to the inheritance lock
library instead. In this chapter we introduce the shared library and give a brief overview of the implementation,
we present the results of running the library with a number of popular applications and show the results of a
stress test using the shared library and the GNU Image Manipulation Program (GIMP).

7.1 Implementation

We introduced the inheritance locking library in Chapter 5 which is the core of the shared library. Furthermore, it
uses a generic map of pthread mutexes to inheritance locks and consists of a number of interposing functions for
pthread mutex calls. These interposing functions are implemented in the source file pthread interpose.c
(Appendix D.1). In particular, the following function calls are interposed:

• int pthread mutex lock(pthread mutex t *mutex) This call will be forwarded to the
pthread mutex lock function iff mutex is the graph lock of the inheritance locking library. Otherwise,
a bijective (one-to-one) mapping is used to determine the inheritance lock which corresponds to the mu-
tex. If no mapping for the mutex has been established a new inheritance lock mapped to the mutex will be
created. The acquire function of the inheritance locking library is called using the mapped inheritance
lock.

• int pthread mutex unlock(pthread mutex t *mutex) This call will be forwarded to the
pthread mutex unlock function iff mutex is the graph lock of the inheritance locking library. Otherwise,
the bijective mapping is used to determine the inheritance lock which corresponds to the mutex and the
release function of the inheritance locking library is called instead.

• int pthread mutex trylock(pthread mutex t *mutex) This call can currently not be mapped
to the inheritance locking library and execution is therefore aborted.

• int pthread mutex destroy(pthread mutex t *mutex) Forwards this call to the real im-
plementation of pthread mutex destroy and destroys the associated inheritance lock (in case it exists) of
the mutex using the bijective mapping.

36

The functions above can be used as pure forward functions, that is they simply log and forward the request to the
pthread function, by setting the USE PTHREAD constant to 1. The function calls are therefore tunnelled to the
pthread library (Column 1, Table 7.1).

Furthermore, the library can interpose and report function calls to the pthread condition variable func-
tions pthread cond timedwait(), pthread cond wait() and pthread cond signal(). This
behaviour can be enabled by defining the pre-processor global COND. It is important to interpose these function
calls as well, because there is currently no corresponding implementation in the inheritance locking library (as
discussed in Chapter 8). This means, the usage of condition variables will currently lead to execution failure if
the interposing inheritance locking library is used.

Last but not least, we wrote a shared stub library which simply answered all of the function calls above
positively without any locking. This stub library is a useful tool to decide whether performed locking calls of the
application are actually necessary (Column 3, Table 7.1).

7.2 Application testing

As discussed, using benchmarks for the evaluation of a new locking protocol, can produce non-representative
results and does not necessarily reflect real scenarios in which the locking protocol would be used. It is therefore
desirable to test the locking protocol directly with popular applications.

7.2.1 Design

We ran a number of popular applications with various locking libraries which we put in place using the LD PRELOAD=
dynamic linker facility, which allows to load custom shared libraries before any other dynamic library. This
means that the custom library effectively overwrites all functions with an identical signature in the later loaded
dynamic libraries. We tested correct start up, observational correct behaviour and correct closing. We tested the
inheritance lock library (once with USE PTHREAD = 1 and once with USE PTHREAD = 0) as well as the
stub library. We ran each test three times.

7.2.2 Results

Table 7.1 shows the results of this experiment. Red cells indicate a failure of the application using the corre-
sponding locking library. The cell content gives further information about the nature of the failure.

Table 7.1: LD PRELOAD Dynamic shared object library with popular applications

Application Tunnelled Pthreads Inheritance Locks Stub Library
gnome-calculator Y Y Y

libreoffice Y Waits for condition variable Undefined Behaviour
firefox Core dumps Core dumps Core dumps
gedit Y Y Y

nautilus Y Y Y
inkscape Y Y Y

gnote Y Y Y
gimp Y Y Y

google-chrome Y Releases lock which is not on top of stack Core dumps

37

As we can see, most applications did not struggle with any given locking library even if the library, as it is
the case in the stub library, does not perform any useful operation. Moreover, it is worth noting that the firefox
browser can not be started with LD PRELOAD in place. Further investigations revealed that even an empty
shared object library (i.e. which does not overwrite any functions) causes firefox to crash (core dumped) if it
is included with the LD PRELOAD directive. For this reason we ignore the results produced by firefox as the
preloaded library itself is clearly not the origin of the failure.

7.2.3 Conclusion

From these results we conclude that inheritance locks work well with ordinary applications and that the causes
of failure can be traced back to compatibility issues between pthread mutexes and inheritance locks. On the
other hand, based on the results obtained from the stub library, our results suggest that locking libraries are
often conservatively employed for worst-case, highly contended resource usage. However, this is rare in general
application scenarios. Similar results have been found by Rajwar and Goodman during their work on speculative
lock elision [42].

7.3 Stress test

Even though the results from the previous test give a good indication of correct application behaviour with
alternative locking protocols in place, they are not resilient as they are purely subjective and only tested a limited
number of times. The former is of significance, because it is difficult to judge from the graphical user interface
(GUI) alone whether an application behaves correctly or not. The latter is of particular importance, because
multi-threaded applications can cause errors which are difficult to reproduce and only depend on the scheduling
order of the involved threads. We could observe such an error-prone behaviour with the libreoffice application in
combination with the stub library (see Table 7.1). At times the application worked, while it crashed other times.
This can be described as undefined behaviour.

7.3.1 Design

Given theses limitations, we deduce that the results from the previous test are insufficient for a reliable conclu-
sion. Therefore we decided to use the GNU Image Manipulation Program, GIMP, as the basis for an application
stress test. In particular, we made use of GIMP’s batch processing capability which allows to process an image
file with a pre-written script from the command line interface. This makes it suitable for writing a bash script for
a stress test evaluation while the GUI is avoided altogether (Appendix D.2). We used the Wikipedia logo, saved
as a PNG file, as the image file for the stress test (file details can be found in Table 7.2). The batch script applied
the GIMP unsharp-mask plugin to the file (Appendix D.3). We created a reference file by applying the batch
script without a pre-loaded library. We could then use this reference file to perform a byte-wise comparison with
a file that has been processed with a different locking library in place. We had to skip the first 100 bytes in the
byte-wise comparison as this range contains meta-data including a time stamp which would differ between files.
We ran the test 500 times with the inheritance lock library, the stub library and, as a control group, without a
preloaded library.

38

Table 7.2: Image file for the stress test

Content Wikipedia Logo
Type PNG

Dimensions 1058x1058
Bit depth 32

Size 234KB

7.3.2 Results

Table 7.3: Stress test results

Library Successful runs out of 500 attempts
Inheritance Locks 500

Stub Library 500
Control group 500

Table 7.1 shows the results of the application stress test. We did not record any failures in any of the three test
groups.

7.3.3 Conclusion

These results lend weight to our previous findings, namely, inheritance locks work well in a real application and
locking is often done where it is not necessary.

7.4 Discussion

The results of these tests allow an insight into resource locking of popular applications. Our findings suggest
that locking is often performed in places where this is not necessary therefore posing an unnecessary perfor-
mance overhead. On the other hand, further implementation details of each application are required in order to
effectively support this hypothesis.

Moreover, our results suggest that inheritance locks work well with many popular applications, however,
more work needs to be done in order to increase compatibility of the inheritance lock library as discussed in the
next chapter.

In this chapter we introduced the results of running the inheritance lock library with popular applications
using the LD PRELOAD directive. Our results suggest that often unnecessary locking operations are performed
in applications and that more work needs to be done in order to improve compatibility of the inheritance lock
library. In the next chapter we will discuss these compatibility issues in depth and illustrated possible solutions
in order to tackle these limitations.

39

Chapter 8

Scenarios & Limitations

In the previous chapter we presented results of running the inheritance lock library with popular applications. In
this context, we observed some limitations of the current library implementation which we will discuss in more
depth over the course of this chapter.

In this chapter we first revisit the dining philosophers problem and introduce an example scenario in which
inheritance locks are particularly useful. Then, we focus on some of the limitations of the current library imple-
mentation which is strongly connected to the previous chapter. We also consider approaches to eliminate these
limitations and eventually discuss condition variables in inheritance locks.

8.1 Scenarios

8.1.1 Dining Philosophers with Inheritance Locks

In Subsection 2.2.3 we introduced the dining philosophers problem. In this subsection we consider what happens
when inheritance locks are used to guard the forks in the problem. Generally, no philosopher would ever lend a
fork that he is already holding. The only exception to this is a situation as shown in Figure 8.1. Philosopher five
inherits the right fork of philosopher one as everyone is waiting for philosopher five. Once philosopher five has
finished eating, philosophers four, three, two and one will eat before five can eat again. This is because as soon
as five finishes eating, philosophers one and four will take over five’s forks meaning that four can start eating.
This eating behaviour then goes round the table. In other words, once four finishes eating three can start eating,
once three finishes eating two can start eating and, finally, once two finishes eating one can start eating. Because
of the round going eating it is impossible that all four philosophers are waiting for five, ergo one will not lend
five his fork again until he has eaten. This means, philosopher one (in fact, any philosopher at the table) will not
starve, because he is guaranteed to always eventually eat.

40

Figure 8.1: Philosopher 1 will lend Philosopher 5 his right fork.

8.1.2 Bank Transaction

In this subsection we present an example scenario in which inheritance locks are particularly useful compared to
mutually exclusive locking. In particular, consider a banking system with no allowed overdraft (for simplicity).
If we want to transfer money from account A to B we would first lock both accounts so that no other process can
interfere with our transaction. Then we would check if accountA has sufficient funds for the transaction and if so
we would reduce account A’s balance by the amount and increase account B’s balance accordingly. Eventually
we would unlock both accounts. Algorithm 4 illustrates the semantics of the transfer logic.

Algorithm 4 Transfer money between bank accounts

1: function transfer(amount, sender, receiver) . Transfer amount from sender to receiver
2: lockAccount(sender)
3: lockAccount(receiver)
4: if sender.balance >= amount then . Avoid overdraft
5: sender.balance− = amount
6: receiver.balance+ = amount
7: end if
8: unlockAccount(receiver)
9: unlockAccount(sender)

10: end function

Let us now consider a process, P1, which wants to transfer an arbitrary amount from account A to B. P1

calls the transfer function and locks the bank account A. Let us now assume that user input has occurred and P1

is therefore interrupted. Particularly, the user wishes to run process P2 which transfers an amount from account
B to A. The Kernel therefore spawns P2 which becomes blocked while attempting to lock account A, because
A has already been locked by P1. Since P2 is blocked, control is eventually returned to P1 which equally can
not continue, because B has been locked by P2 (see Figure 8.2a). That means the system is deadlocked. On the
other hand, if inheritance locks are used, P1 could continue and successfully lock account B, because B is held
by P2 which is waiting for A which is held by P1. P1 is therefore the root of resource B (Figure 8.2b).

41

(a)

(b)

Figure 8.2: Example Scenario - Bank transfers

8.2 Limitations

As we can see in the previous scenario, inheritance locks have many advantages over ordinary mutexes in partic-
ular if they are used in generic situations, that is, it is not clear in advance which particular concrete lock will be
locked and unlocked. On the other hand, there are also a number of drawbacks if inheritance locks are used. In
this section we will discuss those limitations and risks of inheritance locks.

First of all, there is a risk that a locked resource changes if another lock is acquired. For example, Algorithm
5 might be considered more efficient than Algorithm 4 from the previous section. In terms of efficiency, this
statement is certainly true. Why bother locking the receiver if the sender has insufficient funds for the transaction?

Algorithm 5 Transfer money between bank accounts

1: function transfer(amount, sender, receiver) . Transfer amount from sender to receiver
2: lockAccount(sender)
3: if sender.balance >= amount then . Avoid overdraft
4: lockAccount(receiver)
5: sender.balance− = amount
6: receiver.balance+ = amount
7: unlockAccount(receiver)
8: end if
9: unlockAccount(sender)

10: end function

42

Using Algorithm 5 is problematic with inheritance locks, though. This is because in line 4, when we try to
acquire the receiver, we might temporarily lend the sender to a different process meaning that the senders balance
might have changed and sender.balance >= amount (line 3) is not true any more.

A further limitation of inheritance locks is the requirement to lock and unlock locks in a stack fashion (LIFO).
In the previous chapter we observed that not all applications lock and unlock in such a stack fashion which was
to be expected. In particular, the execution of Google Chrome failed because the application was attempting to
release a lock which was not on top of the thread’s stack (Subsection 7.2.2).

Finally, condition variables are currently not supported by inheritance locks. Many applications use condition
variables to wait for a condition to occur or to alert waiting threads. In the previous chapter we saw that libreoffice
uses condition variables which meant that the execution had to be aborted when used in combination with the
inheritance lock library (Subsection 7.2.2).

8.3 Library usage

In this section we present a brief user manual and guidelines for using the inheritance lock library.

As a rule of thumb, the programmer should always put much effort into releasing locks in the reversed
order they were acquired. If a lock is acquired in a function, it should be released before the function returns.
Otherwise, it could be extremely difficult to guarantee correct behaviour (i.e. locking and unlocking in LIFO
fashion) or to debug code. This is similar to a synchronized statement in Java [39].

Let us assume that the previous paragraph is always true. If a function of a library, which uses inheritance
locks internally, is called, the state of previously locked resources is guaranteed to stay atomic. This is because
the called library can not know about the user code and it is therefore impossible that the library will amend
any of the locked resources. Even if the thread should become blocked during the library call, the resources are
guaranteed not to be inherited because the thread is blocked while waiting for an internal inheritance lock of the
library which can itself only be held by a library function call.

Similarly like the previous paragraph, the programmer can introduce different levels of abstractions for locks
and functions. Functions of a certain abstraction level only acquire locks of the same level and only call functions
of the same or of a higher level (Figure 8.3). This effectively means that some locks have a different priority
than others guaranteeing that only functions using locks of the same priority/level pre-empt (that is inherit) and
change resources. This approach greatly simplifies some of the complications coming with inheritance locks.
Moreover, it is closely linked to Havender’s Approach 1 [18] better known as the resource hierarchy protocol
[8, 35].

Figure 8.3: Each layer only knows about its own locks and functions as well as higher level functions.

43

8.4 Possible improvements to the library

We determined a number of limitations regarding inheritance locks such as not being able to release a lock that
is not on top of the stack. A very easy solution to this limitation would be the following: Have a flag on each
stack element which indicates whether the element should be released once it is on top of the stack (the release
flag). The acquire function would simply check whether the lock is already on the stack (starting from the top
to effectively handle recursive locks), if the lock is found and the release flag is set, unset the flag. If the flag is
not set and it is a recursive lock or if it was not found in the stack at all, push it on top of the stack and leave the
found entry as it is. Otherwise, report an error.

Similarly, the release function would simply find the lock in the stack (starting from the top) sets the
release flag or continue the search if the flag is already set. Report an error if no such element has been found.
Afterwards keep popping the stack until the top element is not set for release.

A further step would be allowing releasing a lock, l, from the middle of the stack. In particular, this could be
done iff l is not a conveyor resource for any later acquired locks. That means, if none of the locks in the stack
above l have been inherited through l, it is safe to release l (Subsection: 3.4.2, see also Figure 8.4).

Figure 8.4: R3 can not be release yet, because it is a conveyor resource for R4.

Another improvement to the library would be the employment of a spin-lock (with a test-and-set atomic
operation) for the wait-for graph rather than a pthread mutex because all computations on the graph are quick.
Therefore a busy-wait (while waiting for the spin-lock) would not introduce a great overhead. As we have seen
in the micro benchmark test (Chapter 6) the graphLock mutex, acting as the lock for the wait-for graph, is a
significant bottleneck for inheritance locks. Based on the obtained results we prognosticate that speed-ups of up
to 85% could be achieved if the mutex would be replaced with a spin-lock. On the other hand, a different way
to suspend and wake up threads would need to be implemented because the pthread condition variable requires a
locked pthread mutex in order to work.

Finally, we observed starvation in pthread mutexes (Subsection 6.1.2). This means that, in theory, a thread
could struggle to acquire the graphLock of the inheritance lock library because at each attempt a different
thread has already acquired the mutex and the thread is consequently put to sleep. Even though, we did not
experience this behaviour directly, it is likely to occur in larger systems (with several hundred cores) and therefore

44

posses yet another disadvantage of using pthread mutexes internally. Spin-locks can not entirely remove this
risk, however, the risk would be greatly reduced because a calling thread would keep constantly trying to lock
the graph rather than going to sleep.

8.5 Condition variables in inheritance locks1

A further limitation of inheritance locks is the missing functionality of condition variables. We observed this
limitation in the previous chapter (Subsection 7.2.2). A straightforward implementation does not work, because
a process which is waiting for a condition variable might still hold a number of resources. If now the process
which could signal the condition variable has to run a critical section for which a resource is required that is held
by the waiting process, a deadlock can occur. Similarly, if the waiting process is forced to release and re-acquire
all its currently held resource, starvation can occur.

While recent work from Agarwal et al. [1] and Joshi et al. [24] show that deadlock detection is possible
when locks and condition variables are used, it remains unclear whether it is possible to prevent deadlock and
starvation with condition variables in place. This question is therefore of great interest, not just for inheritance
locks, but for the wider field in general.

We suggest to study this issue by introducing a third node type in the wait-for graph representing condition
variables. This node belongs to a resource node (a host node) and a process might wait for such a condition
variable (see Figure 8.5).

Figure 8.5: P1 waits for C1 while P2 holds R1.

8.6 Priority inversion

A further widely studied problem regarding locking protocols is the priority inversion problem which was first
explored by Lampson and Redell [26]. The problem occurs if a low priority process is holding a resource
required by a high priority process. Since the high priority process has to wait for a low priority process, it
is effectively graded down to be a low priority process. A common solution for this problem is the priority
inheritance protocol introduced by Sha et al. [45]. In a nutshell, a high priority process that is waiting for a low
priority process is lending its higher priority to the low priority process until the resource has been released. It
is easy to see that the inheritance lock protocol is closely related to the priority inheritance protocol. It should

1In this and the following sections we return to the process and resource terminology as more generic aspects of inheritance locking
are discussed

45

therefore be straightforward to improve the inheritance lock library with priority inheritance making it a more
powerful library.

In this chapter we revisited the dining philosophers problem and presented a bank transaction scenario using
inheritance locks. We discussed limitations of inheritance locks and thoroughly discussed possibilities to reduce
those limitations as well as further improve the inheritance lock library. In the next chapter we will conclude and
revise the outcomes of this project.

46

Chapter 9

Conclusion

In the previous chapter we discussed some scenarios in which inheritance locks would be particularly useful as
well as thoroughly discussed limitations of the inheritance lock library and possibilities to improve the library.
In this chapter we conclude the results of the project as well as discuss future work and learned lessons.

9.1 Summary

The risk of deadlock, starvation and/or livelock is present in many parallel systems and is often ignored. Almost
all popular locking protocols do not prevent deadlock, starvation or livelock. If this property is required, for
example in a safety critical system, the programmer is required to check for this property by other means for
example with a state model checker. This is not ideal especially with the significant increase of concurrent
applications on highly connected, parallel systems. Therefore we proposed a novel locking protocol, inheritance
locks, which is a refinement of an approach suggest by Havender [18]. While Havender’s approach prevents
deadlocks it is prone to starvation.

We have shown that inheritance locks prevent starvation by allowing resource pre-emption, but only in certain
circumstances. In particular, we thoroughly discussed the origin and the approach of inheritance locks. First we
introduced inheritance locks using an illustrative example. Secondly, we gave a precise, mathematical description
of inheritance locks using graph theory.

Using the SPIN model checker, we were able to verify our claims for a number of resource/process correla-
tions. While we were not able to verify all attempted models, all models were attempted to be verified at least
once and each finished verification was positive. These results strongly support our hypothesis.

We implemented inheritance locks as a C library and justified design decisions. We presented the API as
well as implementation details using high-level pseudo code.

Using two benchmarks, the micro and the tyche benchmark, we were able to compare the inheritance lock
library with other well established and popular locking protocols. Our results show that inheritance locks can
be on average at least as fast as transactional memory and that inheritance locks, other than pthread and C++
mutexes, are not prone to deadlock and starvation.

Furthermore we ran a number of applications with inheritance locks using the LD PRELOAD directive as well
as an application stress test with GIMP. Here, the results suggest that locking libraries are often conservatively
employed for worst-case, highly contended resource usage. In other words, locking libraries are often overused.

47

Finally, we discussed a number of scenarios in which inheritance locks are particularly useful. We thoroughly
and critically analysed limitations of the inheritance lock library as well as discussed solution approaches for
these limitations.

9.2 Future Work

Even though we believe that the introduction of inheritance locks made a significant advancement to the field,
there is still more development and research required in order to improve the inheritance lock library and to fully
understand the nature of the problem. In this section we briefly describe some of the possible areas of interest
for future work.

• Release locks if they are not on top of the stack

As we saw in Chapter 7 and discussed in 8.4 the requirement to acquire and release locks in a stack-
fashion (LIFO) is a clear disadvantage of the library in terms of usability. We discussed ways how this
requirement could be loosened and therefore strongly improve the inheritance lock library.

• Deadlock prevention with condition variables

To the best of our knowledge, no effective deadlock prevention protocol has been introduced that
can handle locks, condition variables and semaphores. In 8.5 we briefly discussed a first step towards
condition variables in the inheritance lock library. However, much more research in this area is required to
fully understand the issue.

• Use a spin-lock to guard the wait-for graph

As discussed in 8.4 the wait-for graph is currently locked by a pthread mutex in the inheritance lock
library. This is not ideal because locking and unlocking the pthread mutex is a significant bottleneck of
the library. Furthermore, threads become blocked and put to sleep when they have to wait for a pthread
mutex to become available. In the worst case this might lead to starvation because a ptread mutex does not
have a FIFO wait queue. Moreover, operations on the wait-for graph are usually fairly quick and putting
a waiting thread to sleep slows down execution by introducing avoidable context switches. We therefore
suggest replacing the graphLock mutex with a spin-lock in the inheritance lock library.

• Priority Inheritance

The priority inheritance protocol is closely related to inheritance locks as we have pointed out in 8.6.
Therefore we argue that it is fairly easy to implement priority inheritance in the inheritance lock library.
This would form a further significant advantage of the library as priority inversion would be prevented.

9.3 Personal Reflection

The project’s idea occurred to me while I was learning about several deadlock prevention protocols and I realised
that most of them are prone to starvation. However, at the beginning of this project I had strong doubts about
the uniqueness and relevance of the self-proposed topic, Inheritance Locks. Nevertheless, I decided to be not
prejudiced against my own idea and pursue the topic further.

During the project I learned many research skills and it trained me to be critical and yet fair to my own
and other’s ideas. Apart from literature review skills, I also improved my academic writing skills. In terms of
programming, I particularly improved my scripting skills specifically shell scripting.

48

I am pleased with the outcomes of the project and I am glad to say that pursuing a self-proposed topic was
a great decision. I was impressed by some of the obtained results and would use inheritance locks in my own
programming projects.

9.4 Acknowledgements

I would like to thank my supervisor Dr Jeremy Singer and Anna Lito Michala for their great support and assis-
tance. Their feedback was often critical, but always fair and very helpful.

49

Bibliography

[1] Rahul Agarwal and Scott D Stoller. Run-time detection of potential deadlocks for programs with locks,
semaphores, and condition variables. In Proceedings of the 2006 workshop on Parallel and distributed
systems: testing and debugging, pages 51–60. ACM, 2006.

[2] Ştefan Andrei and Cristian Masalagiu. About the collatz conjecture. Acta Informatica, 35(2):167–179,
1998.

[3] Valmir C Barbosa. The combinatorics of resource sharing. In Models for Parallel and Distributed Compu-
tation, pages 27–52. Springer, 2002.

[4] Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price. The convoy phenomenon. ACM SIGOPS Operating
Systems Review, 13(2):20–25, 1979.

[5] Edward G Coffman, Melanie Elphick, and Arie Shoshani. System deadlocks. ACM Computing Surveys
(CSUR), 3(2):67–78, 1971.

[6] Ajoy Kumar Datta, Ramesh Dutt Javagal, and Sukumar Ghosh. An algorithm for preventing deadlocks in
distributed systems. In Computers and Communications, 1992. Conference Proceedings., Eleventh Annual
International Phoenix Conference on, pages 109–116. IEEE, 1992.

[7] Edsger W. Dijkstra. De bankiers algorithme. Banker’s Algorithm, 1965.

[8] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta informatica, 1(2):115–138, 1971.

[9] Edsger W. Dijkstra. Ewd manuscript 1000, 1987.

[10] Shalom Eliahou. The 3x+ 1 problem: new lower bounds on nontrivial cycle lengths. Discrete mathematics,
118(1-3):45–56, 1993.

[11] Joaquin Ezpeleta, Jose Manuel Colom, and Javier Martinez. A petri net based deadlock prevention policy
for flexible manufacturing systems. IEEE transactions on robotics and automation, 11(2):173–184, 1995.

[12] Luca Ferrarini, Luigi Piroddi, and Stefano Allegri. A comparative performance analysis of deadlock avoid-
ance control algorithms for fms. Journal of Intelligent Manufacturing, 10(6):569–585, 1999.

[13] GCC. Transactional memory in gcc. https://gcc.gnu.org/wiki/TransactionalMemory,
2012. Accessed on: 02/02/2017.

[14] Rubino Geiß and Moritz Kroll. On improvements of the varro benchmark for graph transformation tools.
Universität Karlsruhe, IPD Goos, Tech. Rep, 7(12), 2007.

[15] GNU. Source code pthread mutex lock(). http://code.metager.de/source/xref/gnu/
glibc/nptl/pthread_mutex_lock.c, 2002. Accessed on: 15/03/2017.

[16] A Nico Habermann. Prevention of system deadlocks. Communications of the ACM, 12(7):373–ff, 1969.

50

https://gcc.gnu.org/wiki/TransactionalMemory
http://code.metager.de/source/xref/gnu/glibc/nptl/pthread_mutex_lock.c
http://code.metager.de/source/xref/gnu/glibc/nptl/pthread_mutex_lock.c

[17] Vicky Hartonas-Garmhausen, Sergio Campos, Alessandro Cimatti, Edmund Clarke, and Fausto
Giunchiglia. Verification of a safety-critical railway interlocking system with real-time constraints. In
Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth Annual International Symposium on,
pages 458–463. IEEE, 1998.

[18] James W. Havender. Avoiding deadlock in multitasking systems. IBM systems journal, 7(2):74–84, 1968.

[19] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support for lock-free data
structures, volume 21. ACM, 1993.

[20] Richard C Holt. Some deadlock properties of computer systems. ACM Computing Surveys (CSUR),
4(3):179–196, 1972.

[21] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley Professional,
2003.

[22] IBM. Deadlock when eeh frozen and setting multicast. https://www-304.ibm.com/support/
docview.wss?uid=isg1IY60280, 2004. Accessed on: 08/02/2017.

[23] Sreekaanth S Isloor and T Anthony Marsland. The deadlock problem: An overview. Computer, 13(9):58–
78, 1980.

[24] Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay. An effective dynamic analysis for detecting gener-
alized deadlocks. In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, pages 327–336. ACM, 2010.

[25] Wikimedia Kopiersperre. Graph of ”internet hosts count 1964-2018, logarithmic scale” based on data from
the internet systems consortium. https://commons.wikimedia.org/wiki/File:Internet_
Hosts_Count_log.svg, 2014. Accessed on: 08/02/2017.

[26] Butler W Lampson and David D Redell. Experience with processes and monitors in mesa. Communications
of the ACM, 23(2):105–117, 1980.

[27] Gertrude Neuman Levine. The classification of deadlock prevention and avoidance is erroneous. ACM
SIGOPS Operating Systems Review, 39(2):47–50, 2005.

[28] ZhiWu Li and MengChu Zhou. Elementary siphons of petri nets and their application to deadlock pre-
vention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 34(1):38–51, 2004.

[29] Don Libes. Exploring Expect: a Tcl-based toolkit for automating interactive programs. ”O’Reilly Media,
Inc.”, 1995.

[30] Lin Lou, Feilong Tang, Ilsun You, Minyi Guo, Yao Shen, and Li Li. An effective deadlock prevention mech-
anism for distributed transaction management. In Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2011 Fifth International Conference on, pages 120–127. IEEE, 2011.

[31] Daniel A Menasce and Richard R Muntz. Locking and deadlock detection in distributed data bases. IEEE
Transactions on Software Engineering, (3):195–202, 1979.

[32] Microsoft. Wait chain traversal. https://msdn.microsoft.com/en-us/library/windows/
desktop/ms681622(v=vs.85).aspx, 2017. Accessed on: 02/02/2017.

[33] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. Stamp: Stanford transactional
applications for multi-processing. In Workload Characterization, 2008. IISWC 2008. IEEE International
Symposium on, pages 35–46. IEEE, 2008.

[34] Toshimi Minoura. Deadlock avoidance revisited. Journal of the ACM (JACM), 29(4):1023–1048, 1982.

51

https://www-304.ibm.com/support/docview.wss?uid=isg1IY60280
https://www-304.ibm.com/support/docview.wss?uid=isg1IY60280
https://commons.wikimedia.org/wiki/File:Internet_Hosts_Count_log.svg
https://commons.wikimedia.org/wiki/File:Internet_Hosts_Count_log.svg
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681622(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681622(v=vs.85).aspx

[35] Waleed A. Muhanna. Composite programs: Hierarchical construction, circularity, and deadlocks. IEEE
transactions on software engineering, 17(4):320–333, 1991.

[36] Mohamed Naimi, Michel Trehel, and André Arnold. A log (n) distributed mutual exclusion algorithm based
on path reversal. Journal of parallel and distributed computing, 34(1):1–13, 1996.

[37] Fabiano de S Oliveira and Valmir C Barbosa. Revisiting deadlock prevention: A probabilistic approach.
Networks, 63(2):203–210, 2014.

[38] Oracle. Deadlock status - enterprise manager. https://docs.oracle.com/cd/
B16240_01/doc/doc.102/e16282/oracle_database_help/oracle_database_
adralertlogincidenterrorstatus_deadlockerrors.html, 2009. Accessed on:
08/02/2017.

[39] Oracle. Intrinsic locks and synchronization. https://docs.oracle.com/javase/tutorial/
essential/concurrency/locksync.html, 2015. Accessed on: 17/03/2017.

[40] Andrew Oram, Greg Wilson, and Simon Peyton Jones. Beautiful code. O’reilly, 2007.

[41] Pratibha Permandla, Michael Roberson, and Chandrasekhar Boyapati. A type system for preventing data
races and deadlocks in the java virtual machine language: 1. In ACM SIGPLAN Notices, volume 42,
page 10. ACM, 2007.

[42] Ravi Rajwar and James R Goodman. Speculative lock elision: Enabling highly concurrent multithreaded
execution. In Proceedings of the 34th annual ACM/IEEE international symposium on Microarchitecture,
pages 294–305. IEEE Computer Society, 2001.

[43] David J. Rypka and Anthony P. Lucido. Deadlock detection and avoidance for shared logical resources.
IEEE Transactions on Software Engineering, (5):465–471, 1979.

[44] Martin Schindewolf, Albert Cohen, Wolfgang Karl, Andrea Marongiu, and Luca Benini. Towards transac-
tional memory support for gcc. In 1st GCC Research Opportunities Workshop, 2009.

[45] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on computers, 39(9):1175–1185, 1990.

[46] Arie Shoshani and EG Coffman. Sequencing tasks in multiprocess systems to avoid deadlocks. In Switching
and Automata Theory, 1970., IEEE Conference Record of 11th Annual Symposium on, pages 225–235.
IEEE, 1970.

[47] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Silberschatz. Operating system concepts, vol-
ume 4. Addison-wesley Reading, 1998.

[48] Abraham Silberschatz and ZM Kedam. A family of locking protocols for database systems that are modeled
by directed graphs. IEEE Transactions on Software Engineering, (6):558–562, 1982.

[49] TIOBE. Tiobe index. http://www.tiobe.com/tiobe-index/, 2017. Accessed on: 20/02/2017.

[50] Gergely Varro, Andy Schurr, and Daniel Varro. Benchmarking for graph transformation. In 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05), pages 79–88. IEEE, 2005.

[51] Veritas. I/o hang due to a vxvm deadlock in the kblockd context on the linux platform. https://www.
veritas.com/support/en_US/article.TECH68863, 2015. Accessed on: 08/02/2017.

[52] Amy Williams, William Thies, and Michael D Ernst. Static deadlock detection for java libraries. In
European Conference on Object-Oriented Programming, pages 602–629. Springer, 2005.

[53] Dieter Zöbel. The deadlock problem: A classifying bibliography. ACM SIGOPS Operating Systems Review,
17(4):6–15, 1983.

52

https://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/oracle_database_help/oracle_database_adralertlogincidenterrorstatus_deadlockerrors.html
https://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/oracle_database_help/oracle_database_adralertlogincidenterrorstatus_deadlockerrors.html
https://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/oracle_database_help/oracle_database_adralertlogincidenterrorstatus_deadlockerrors.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html
http://www.tiobe.com/tiobe-index/
https://www.veritas.com/support/en_US/article.TECH68863
https://www.veritas.com/support/en_US/article.TECH68863

Appendices

53

Appendix A

Scripts used for running SPIN in Computer
Cluster

A.1 login.exp

! / u s r / b i n / e x p e c t

s e t t i m e o u t 3
s e t t a r g e t [l i n d e x $a rgv 0]
s e t password [l i n d e x $argv 1]
s e t l o c k s [l i n d e x $a rgv 2]

spawn s s h 2079884 f @ $ t a r g e t
e x p e c t {

” ∗ f i n g e r p r i n t ∗ ” {
send ” yes\ r ”
e x p c o n t i n u e

}
” password ” {

send ” $password\ r ”
e x p e c t {

” ∗School o f Computing S c i e n c e∗ ” {
e x p e c t ” ∗bash∗ ”
send ” cd l o c k i n g l 4 p r o j e c t / modelChecker /\ r ”
e x p e c t ” ∗bash∗ ”
send ” nohup . / r e m o t e W o r k e r . s h $ l o c k s $ t a r g e t >/dev / n u l l 2>&1 &\ r ”
e x p e c t ” ∗bash∗ ”
send ” e x i t \ r ”
e x p e c t ” ∗ l o g o u t∗ ”
e x p e c t e o f
e x i t 1

}
” P e r m i s s i o n de n i e d∗ ” {

send \003
}

}
}
” ∗Could n o t r e s o l v e hostname∗ ” {}

}
e x p e c t e o f
e x i t 0

A.2 remoteWorker.sh

! / b i n / bash

#

54

F i r s t argument : Number o f l o c k s
Second argument : Name o f t h e PC
#
Always check f o r 2−10 t h r e a d s (one t h r e a d c r a s h e s)
#
Every PC c h e c k s f i r s t f o r 2−10 t h r e a d s
on s p e c i f i e d number o f l o c k s
#
Then a l l PCs check f o r 2−3 l o c k
w i t h 2−10 t h r e a d s
#

l =2 #Lower number o f t h r e a d s
u=10 #Upper number o f t h r e a d s
t =3 #Common number o f l o c k s

mkdir . / r e m o t e A r c h i v e / $1 . $2
cp . / M a k e f i l e . / r e m o t e A r c h i v e / $1 . $2 /
cp . / c r e a t o r . / r e m o t e A r c h i v e / $1 . $2 /
cd . / r e m o t e A r c h i v e / $1 . $2 /

f o r i in ‘ seq $ l $u ‘ ;
do

. / c r e a t o r $ i $1 > model . pml
make v e r i f y > $ i . $1 . $2 . t x t

done

f o r i in ‘ seq $ l $u ‘ ;
do

f o r j in ‘ seq 1 $t ‘ ;
do

. / c r e a t o r $ i $ j > model . pml
make v e r i f y > $ i . $ j . $2 . t x t

done
done

rm . / model∗
rm . / c r e a t o r
rm . / M a k e f i l e

A.3 runExpect.sh

! / b i n / bash

F i r s t argument : Password
Second argument : Room
T h i r d argument : L i m i t

ROUND=1 # 3 Rounds D e f a u l t :1
COUNT=4 # A s s i g n 4 t o 10 D e f a u l t :4

s t r Z e r o =” 0 ”
s t r D a s h =”−”
s t r S u f f i x =” u ”

f o r i in ‘ seq 1 $3 ‘ ;
do

i f [$ i − l t 10] ; then #For padding a z e r o i n name i . e . 01u
t a r g e t = $ 2 $ s t r D a s h $ s t r Z e r o $ i $ s t r S u f f i x

e l s e
t a r g e t = $ 2 $ s t r D a s h $ i $ s t r S u f f i x

f i
e x p e c t . / l o g i n . exp $ t a r g e t $1 $COUNT
i f [$? −eq 1] ; then

COUNT=$ ((COUNT+ 1))
i f [$COUNT −eq 11] ; then

ROUND=$ ((ROUND+ 1))
COUNT=4
i f [$ROUND −eq 4] ; then

echo ”ALL DONE! L a s t PC t o be a s s i g n e d was : $ t a r g e t ”
e x i t 1

55

f i
f i

f i
done

echo ” Reached upper l i m i t . Next v a l u e s would be ROUND=$ROUND COUNT=$COUNT”

A.4 Makefile

SEARCH DEPTH = 10000000
MAX STEPS = 10000
RANDOM SEED = 123
MEMORY LIMIT = 32768 # In MB

v e r i f y :
s p i n −a model . pml
gcc −DMEMLIM=$ (MEMORY LIMIT) −O2 −DXUSAFE −DNFAIR=3 −DCOLLAPSE −w −o pan pan . c
. / pan −m$(SEARCH DEPTH) −a −f
rm pan∗
rm ∗ . tmp

s i m u l a t e :
s p i n −p −s −r −X −v −n$ (RANDOM SEED) − l −g −u$ (MAX STEPS) model . pml

c r e a t o r : c r e a t o r . hs
ghc $ ˆ
rm c r e a t o r . o
rm c r e a t o r . h i

56

Appendix B

Source code extracts of the library

B.1 inheritance lock api.h

/∗ ∗
∗ I n h e r i t a n c e Lock P r o t o c o l Header f i l e
∗ T h i s i s t h e API header use t h i s , and o n l y t h i s , header f i l e i f you wish t o use i n h e r i t a n c e l o c k s i n your code .
∗ Furthermore , you w i l l need t o l i n k t o t h e l i b r a r y d u r i n g c o m p i l a t i o n .
∗
∗ @author : W. David F r o h l i n g s d o r f
∗ @date : 2016
∗ @purpose : D i s s e r t a t i o n , U n i v e r s i t y o f Glasgow
∗ ∗ /

i f n d e f INHERITANCE LOCK API
d e f i n e INHERITANCE LOCK API

/ / / ∗ ∗ ∗ ∗ N e c e s s a r y i n c l u d e s ∗ ∗ ∗ ∗
i n c l u d e <p t h r e a d . h>

/ / / ∗ ∗ ∗ ∗ Types ∗ ∗ ∗ ∗
t y p e d e f void ∗INHERIT LOCK ;

/ / / ∗ ∗ ∗ ∗ P r o t o t y p e s ∗ ∗ ∗ ∗

/ / R e s e r v e s enough memory f o r a lock , i n i t a l i a s e s t h e l o c k and r e t u r n s a p o i n t e r t o i t .
/ / I f a d d r e s s o f a p o i n t e r i s g i v e n as an argument (o t h e r w i s e NULL) , t h i s p o i n t e r w i l l a l s o be d i r e c t e d
/ / t o t h e newly c r e a t e d l o c k . r e c l o c k a l l o w s a t h r e a d t o a c q u i r e a l o c k more than once (n e s t e d)
/ / R e t u r n s NULL i f an e r r o r occured
INHERIT LOCK c r e a t e l o c k (INHERIT LOCK ∗) ;
INHERIT LOCK c r e a t e r e c l o c k (INHERIT LOCK ∗) ;

/ / The c a l l i n g t h r e a d t r i e s t o l o c k t h e g i v e n l o c k and migh t b l o c k u n t i l i t i s a v a i l a b l e .
/ / Whi le t h e t h r e a d i s b locked , p r e v i o u s l y a c q u i r e d l o c k s migh t be t e m p o r a r l y preempted a c c o r d i n g
/ / t o t h e p r o t o c o l ’ s d e f i n i t i o n . F a i l s i f t h r e a d t r i e s t o l o c k a non−r e c u r s i v e l o c k aga in .
/ / R e t u r n s 0 i f s u c c e s s f u l , −1 o t h e r w i s e
i n t a c q u i r e (INHERIT LOCK) ;

/ / The c a l l i n g t h r e a d r e l e a s e t h e g i v e n l o c k . Note t h a t t h i s a l s o has t o be t h e l a s t l o c k t h a t
/ / has been a c q u i r e d by t h i s t h r e a d as r e q u i r e d by t h e p r o t o c o l . R e t u r n s 0 i f s u c c e s s f u l −1 o t h e r w i s e
/ / (i l l e g a l r e l e a s e o f l o c k) . I f n o t s u c c e s s f u l , t h e t h r e a d s t i l l owns t h e l o c k .
i n t r e l e a s e (INHERIT LOCK) ;

/ / Frees t h e memory c u r r e n t l y o c c u p i e d by t h e l o c k o b j e c t . The p o i n t e r t o t h e lock , which a d d r e s s
/ / has t o be g i v e n as an argument , w i l l be s e t t o NULL i f s u c c e s s f u l . The f u n c t i o n w i l l f a i l i f t h e
/ / l o c k i s c u r r e n t l y h e l d by a t h r e a d or t h r e a d s are w a i t i n g f o r i t . R e t u r n s 0 i f s u c c e s s f u l −1 o t h e r w i s e .
i n t d e s t r o y l o c k (INHERIT LOCK ∗) ;

e n d i f /∗ INHERITANCE LOCK API ∗ /

57

B.2 acquire() Function

i n t a c q u i r e (INHERIT LOCK l)
{

LOCK ∗ l o c k = (LOCK ∗) (l) ;
THRD ∗ t = getNode () ;
THRD ∗ r o o t ;
i n t e ;
i f (l == NULL)
{

i f (VERBOSE)
f p r i n t f (s t d e r r , ” Can n o t a c q u i r e a NULL p o i n t e r !\ n ”) ;

i f (LOG LEVEL >= 1)
l o g g e r (”Can n o t a c q u i r e a NULL p o i n t e r !\ n ”) ;

re turn −1;
}
i f (lock−>r e c u r s i v e == 0 && lock−>heldBy != NULL && s t a c k C o n t a i n s (t , l o c k))
{

i f (VERBOSE)
f p r i n t f (s t d e r r , ”Non−r e c u r s i v e l o c k has a l r e a d y been a c q u i r e d b e f o r e !\ n ”) ;

i f (LOG LEVEL)
l o g g e r (”Non−r e c u r s i v e l o c k has a l r e a d y been a c q u i r e d b e f o r e !\ n ”) ;

re turn −1; / / Non−r e c u r s i v e l o c k has a l r e a d y been a c q u i r e d b e f o r e
}

l ockGraph () ;
r o o t = g e t R o o t (l o c k) ; / / Check which t h r e a d i s c u r r e n t l y h o l d i n g t h e l o c k
i f (r o o t == NULL) / / No one i s h o l d i n g t h i s l o c k
{

push (t , l o c k) ;
lock−>heldBy = t ;
i f (LOG LEVEL >= 3)

l o g g e r (” Acqu i red l o c k n o r m a l l y .\ n ”) ;
un lockGraph () ;
re turn 0 ;

}
i f (r o o t == t) / / T h i s t h r e a d i s a l r e a d y h o l d i n g t h e l o c k
{

push (t , l o c k) ;
i f (LOG LEVEL >= 2)

l o g g e r (” Acqu i red l o c k i n h e r i t e n t l y .\ n ”) ;
un lockGraph () ;
re turn 0 ;

}
t−>w a i t s F o r = l o c k ; / / A d i f f e r e n t t h r e a d i s h o l d i n g t h e l o c k
enqueue (lock , t) ;
i f (LOG LEVEL >= 3)

l o g g e r (” Wai t i ng f o r l o c k t o become a v a i l a b l e .\ n ”) ;
e = p t h r e a d c o n d w a i t (&(t−>a la rm) , &graphLock) ;
i f (e)

a b o r t W i t h E x c e p t (”An e r r o r o c c u r e d i n p t h r e a d c o n d w a i t () . R e t u r n e d wi th ” , e) ;
un lockGraph () ;
re turn 0 ;

}

B.3 release() Function

/ / R e l e a s e s a l o c k from t h e t h r e a d .
/ / Other than t h e API r e l e a s e , t h i s i n t e r n a l r e l e a s e f u n c t i o n r e q u i r e s t h e
/ / t h r e a d s t r u c t u r e t o be handed over i n t h e second parame te r . T h i s i s n e c e s s a r y
/ / as r e l e a s e i n t e r n () migh t be c a l l e d from t h e t h r e a d s p e c i f i c memory d e s c t r u c t o r .
/ / @param The a c c o r d i n g l o c k
/ / @param The a c c o r d i n g t h r e a d
/ / @return −1 i f an e r r o r occured , 0 o t h e r w i s e
i n t r e l e a s e i n t e r n (LOCK ∗ lock , THRD ∗ t)
{

THRD ∗ n e x t ;
i n t e ;
i f (peek (t) != l o c k) / / We can o n l y r e l e a s e t h e l o c k from t h e t o p o f t h e s t a c k
{

58

i f (VERBOSE)
f p r i n t f (s t d e r r , ” T r i e d t o r e l e a s e a l o c k which i s n o t on t o p of t h e s t a c k !\ n ”) ;

i f (LOG LEVEL >= 1)
l o g g e r (” T r i e d t o r e l e a s e a l o c k which i s n o t on t o p of t h e s t a c k !\ n ”) ;

re turn −1;
}

l ockGraph () ;
pop (t) ;
i f (t != lock−>heldBy) / / Thread i n h e r i t e d t h i s l o c k
{

i f (LOG LEVEL >= 2)
l o g g e r (” R e l e a s e d l o c k i n h e r i t e n t l y .\ n ”) ;

un lockGraph () ;
re turn 0 ;

}
n e x t = dequeue (l o c k) ;
lock−>heldBy = n e x t ;
i f (n e x t !=NULL) / / I f a n o t h e r t h r e a d i s w a i t i n g f o r t h e lock , hand i t ove r and wake up t h e t h r e a d
{

next−>w a i t s F o r = NULL;
push (nex t , l o c k) ;
e = p t h r e a d c o n d s i g n a l (&(next−>a la rm)) ;
i f (e)

a b o r t W i t h E x c e p t (”An e r r o r o c c u r e d w h i l e s i g n a l i n g c o n d i t i o n v a r i a b l e ! ”
” p t h r e a d c o n d s i g n a l () r e t u r n e d wi th ” , e) ;

i f (LOG LEVEL >= 3)
l o g g e r (” T r a n s f e r e d l o c k t o n e x t t h r e a d i n queue .\ n ”) ;

}
e l s e i f (LOG LEVEL >= 3)

l o g g e r (” R e l e a s e d l o c k n o r m a l l y .\ n ”) ;
un lockGraph () ;
re turn 0 ;

}

59

Appendix C

Scripts used in the tyche benchmark test

C.1 runO3.sh

! / b i n / bash

Arguments :
#1 = a p p l i c a t i o n N a m e
#2 = o u t p u t C s v F i l e
#3 = m a x l o c k s
#4 = m a x t h r e a d s s t a r t
#5 = m a x t h r e a d s i n t e r v a l
#6 = m a x t h r e a d s i t e r a t i o n s
#7 = rounds

c u r r e n t d a t e =” ‘ d a t e +%Y−%m−%d−%H:%M:%S ‘ ” ;
echo $ c u r r e n t d a t e

S e t u p make a c l e a n work ing e n v i r o n m e n t
f o r i in 5 10 15 25 5 0 ;
do

cp r e s u l t s O 3 / c l e a n . csv r e s u l t s O 3 / $ i . l o c k s / tm . csv
cp r e s u l t s O 3 / c l e a n . csv r e s u l t s O 3 / $ i . l o c k s / i n h e r i t . c sv

done

f o r ((j =0 ; j <100; j + +)) ;
do

f o r i in 5 10 15 25 5 0 ;
do

. / r u n E x p e r i m e n t . sh tes tTM r e s u l t s O 3 / $ i . l o c k s / tm . csv $ i 10 10 10 10

. / r u n E x p e r i m e n t . sh t e s t I n h e r i t r e s u l t s O 3 / $ i . l o c k s / i n h e r i t . c sv $ i 10 10 10 10
done

done

Pos t p r o c e s s i n g
f o r i in 5 10 15 25 5 0 ;
do

py thon r e s u l t s O 3 / s t a t . py r e s u l t s O 3 / $ i . l o c k s / tm . csv r e s u l t s O 3 / $ i . l o c k s / i n h e r i t . c sv ”Max $ i l o c k s ” ” f i g . bench . t y c h e . o p t i m i s e d . r e s $ i . l o c k s 0 1 ” > r e s u l t s O 3 / $ i . l o c k s . t e x
done

c u r r e n t d a t e =” ‘ d a t e +%Y−%m−%d−%H:%M:%S ‘ ” ;
echo $ c u r r e n t d a t e

C.2 runExperiment.sh

! / b i n / bash

Arguments :
#1 = a p p l i c a t i o n N a m e

60

#2 = o u t p u t C s v F i l e
#3 = m a x l o c k s
#4 = m a x t h r e a d s s t a r t
#5 = m a x t h r e a d s i n t e r v a l
#6 = m a x t h r e a d s i t e r a t i o n s
#7 = rounds

uppe r =$ (($4+$5∗$6))
f o r ((j =0 ; j<$7 ; j + +)) ;
do

f o r ((i =$4 ; i<$upper ; i =$ ((i +$5)))) ; # i = C u r r e n t max t h r e a d s
do

. / $1 − t $ i − l $3 > swap . tmp
py thon outToCsv . py swap . tmp $2 $3 $ i

done
done

rm swap . tmp

C.3 outToCsv.py

import s y s

Arguments :
r e s u l t F i l e o u t C s v F i l e l o c k s t h r e a d s

wi th open (s y s . a rgv [1]) a s f :
l i n e = f . r e a d l i n e ()
w i th open (s y s . a rgv [2] , ” a ”) a s o :

o . w r i t e (l i n e [3 6 :] . s p l i t (” ns ”) [0] + ” , ” + s y s . a rgv [3] + ” , ” + s y s . a rgv [4] + ”\n ”)

C.4 stat.py

import s y s

Arguments :
#1 f i r s t C s v F i l e
#2 s e c o n d C s v F i l e
#3 F ig ur e c a p t i o n
#4 F ig ur e l a b e l

Hardcoded i n f i l e :
S i z e o f t e s t d a t e (1 0 0 0)
W h i s k e r s (2% , 98%)

def h (a , b) :
re turn ((a + b) / 2 . 0)

def p r i n t B e g i n (c a p t i o n , l a b e l) :
p r i n t (”\\ b e g i n { f i g u r e }”)
p r i n t (”\\ c a p t i o n {” + c a p t i o n + ”}”)
p r i n t (”\\ l a b e l {” + l a b e l + ”}”)
p r i n t (”\\ b e g i n { t i k z p i c t u r e }”)
p r i n t (” \\ b e g i n { a x i s } [”)
p r i n t (” b o x p l o t / draw d i r e c t i o n =y , ”)
p r i n t (” x l a b e l ={Max . t h r e a d . \\ t e x t c o l o r { b l u e }{TM} , \\ t e x t c o l o r { r e d }{ I n h e r i t a n c e Locks }} , ”)
p r i n t (” y l a b e l ={Time needed [ns]} , ”)
p r i n t (” x t i c k ={ 4 . 5 , 1 0 . 5 , 1 6 . 5 , 2 2 . 5 , 2 8 . 5} , ”)
p r i n t (” x t i c k l a b e l s ={20 ,40 ,60 ,80 ,100} , ”)
p r i n t (”] ”)

def p r i n t E n d () :
p r i n t (” \\ end{ a x i s }”)
p r i n t (”\\ end{ t i k z p i c t u r e }”)
p r i n t (”\\ end{ f i g u r e }”)

def s p a c e P l o t () :
p r i n t (” \\ a d d p l o t +[b o x p l o t p r e p a r e d ={”)
p r i n t (” lower w h i s k e r =0 , lower q u a r t i l e =0 , ”)

61

p r i n t (” median =0 , uppe r q u a r t i l e =0 , ”)
p r i n t (” uppe r w h i s k e r =0} , whi te , s o l i d] ”)
p r i n t (” c o o r d i n a t e s {} ; ”)

def r e a d C s v F i l e (name , c o l o u r) :
l i s t O u t = []
w i th open (name) as f :

l = f . r e a d l i n e ()

Hardcoded v a r i a b l e s
l e n g t h f o r each = 1000
d i c = { 1 0 : [] , 2 0 : [] , 3 0 : [] , 4 0 : [] , 5 0 : [] , 6 0 : [] , 7 0 : [] , 8 0 : [] , 9 0 : [] , 1 0 0 : []}

l = f . r e a d l i n e ()
whi le l != ” ” :

t r i p = l . s t r i p (”\n ”) . s p l i t (” , ”)
v = i n t (t r i p [0])
k = i n t (t r i p [2])
d i c [k] . append (v)
l = f . r e a d l i n e ()

f o r k in s o r t e d (d i c . i t e r k e y s ()) :
v = d i c [k]
v . s o r t ()
median = h (v [4 9 9] , v [5 0 0])
lower = h (v [2 4 9] , v [2 5 0])
uppe r = h (v [7 4 9] , v [7 5 0])
lowWhisk = h (v [1 9] , v [2 0])
highWhisk = h (v [9 7 9] , v [9 8 0])
s = ” \\ a d d p l o t +[b o x p l o t p r e p a r e d ={\n ”
s += ” lower w h i s k e r =”+ s t r (lowWhisk)+ ” , lower q u a r t i l e =”+ s t r (lower)+ ” ,\ n ”
s += ” median=”+ s t r (median)+ ” , uppe r q u a r t i l e =”+ s t r (uppe r)+ ” ,\ n ”
s += ” upper w h i s k e r =”+ s t r (highWhisk)+ ” } , ”+ c o l o u r +” , s o l i d]\ n ”
s += ” c o o r d i n a t e s {} ; ”
l i s t O u t . append (s)

re turn l i s t O u t

#Main
b l u e D a t a = r e a d C s v F i l e (s y s . a rgv [1] , ” b l u e ”)
r e d D a t a = r e a d C s v F i l e (s y s . a rgv [2] , ” r e d ”)
f i r s t = True

p r i n t B e g i n (s y s . a rgv [3] , s y s . a rgv [4])
f o r i in range (l e n (b l u e D a t a)) :

i f not f i r s t :
s p a c e P l o t ()

e l s e :
f i r s t = F a l s e

p r i n t (b l u e D a t a [i])
p r i n t (r e d D a t a [i])

p r i n t E n d ()

62

Appendix D

Scripts and source code used in the
application stress test

D.1 pthread interpose.c

/∗ ∗
∗ Dynamic sh ar ed l i b r a r y which when lo ad ed
∗ r e p l a c e s a l l p t h r e a d m u t e c i e s c a l l s t o
∗ i n h e r i t l o c k s . P l e a s e check t h e readme
∗ f i l e i n t h i s d i r e c t o r y f o r f u r t h e r d e t a i l s .
∗
∗ Uses a g e n e r i c map as d e f i n e d i n map . h
∗
∗ @author : W. David F r o h l i n g s d o r f
∗ @date : 2016
∗ @purpose : D i s s e r t a t i o n , U n i v e r s i t y o f Glasgow
∗ ∗ /

/ / / ∗ ∗ ∗ Thanks t o ∗ ∗ ∗
/ / / −> s t a c k o v e r f l o w . com / q u e s t i o n s / 3 7 0 7 3 5 8 / ge t−a l l−the−t h read−id−c r e a t e d−wi th−p thread−c r e a t e d−w i t h i n−an−p r o c e s s

/ / / ∗ ∗ ∗ I n c l u d e s ∗ ∗ ∗

d e f i n e GNU SOURCE

i n c l u d e < s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e < s t d i n t . h>
i n c l u d e <b i t s / p t h r e a d t y p e s . h>
i n c l u d e <d l f c n . h>

i n c l u d e ”map . h ”
i n c l u d e ” i n h e r i t a n c e l o c k a p i . h ”

/ / / ∗ ∗ ∗ D e f i n i t i o n s and Macros ∗ ∗ ∗

d e f i n e VERBOSE 2 / / 0=Off , 1=On , 2=Only Warnings and E r r o r s
d e f i n e USE PTHREAD 0 / / Use p t h r e a d mutex r a t h e r than i n h e r i t a n c e l o c k s
d e f i n e GLIBC VERSION ”GLIBC 2 . 3 . 2 ”
d e f i n e COND

/ / / ∗ ∗ ∗ Shared v a r i a b l e s ∗ ∗ ∗

e x t er n p t h r e a d m u t e x t graphLock ;

/ / / ∗ ∗ ∗ R e d i r e c t e d f u n c t i o n s ∗ ∗ ∗

undef p t h r e a d m u t e x l o c k

63

i n t p t h r e a d m u t e x l o c k (p t h r e a d m u t e x t ∗mutex)
{

void ∗key = (void ∗) (mutex) ;
INHERIT LOCK l o c k = NULL;

s t a t i c i n t (∗ r e a l l o c k) (p t h r e a d m u t e x t ∗) = NULL;
i f (! r e a l l o c k)

r e a l l o c k = dlsym (RTLD NEXT , ” p t h r e a d m u t e x l o c k ”) ;

i f (USE PTHREAD | | key == &graphLock)
re turn r e a l l o c k (mutex) ;

i f (VERBOSE == 1)
p r i n t f (” Caught p t h r e a d m u t e x l o c k ()\ n ”) ;

l o c k = map get (key) ;
i f (l o c k == NULL)
{

l o c k = c r e a t e r e c l o c k (NULL) ;
map add (key , l o c k) ;

}
a c q u i r e (l o c k) ;
re turn 0 ;

}

undef p t h r e a d m u t e x u n l o c k

i n t p t h r e a d m u t e x u n l o c k (p t h r e a d m u t e x t ∗mutex)
{

void ∗key = (void ∗) (mutex) ;
INHERIT LOCK l o c k = NULL;

s t a t i c i n t (∗ r e a l u n l o c k) (p t h r e a d m u t e x t ∗) = NULL;
i f (! r e a l u n l o c k)

r e a l u n l o c k = dlsym (RTLD NEXT , ” p t h r e a d m u t e x u n l o c k ”) ;

i f (USE PTHREAD | | key == &graphLock)
re turn r e a l u n l o c k (mutex) ;

i f (VERBOSE == 1)
p r i n t f (” Caught p t h r e a d m u t e x u n l o c k ()\ n ”) ;

l o c k = map get (key) ;
r e l e a s e (l o c k) ;
re turn 0 ;

}

undef p t h r e a d m u t e x t r y l o c k

i n t p t h r e a d m u t e x t r y l o c k (p t h r e a d m u t e x t ∗mutex)
{

s t a t i c i n t (∗ r e a l t r y l o c k) (p t h r e a d m u t e x t ∗) = NULL;
i f (! r e a l t r y l o c k)

r e a l t r y l o c k = dlsym (RTLD NEXT , ” p t h r e a d m u t e x t r y l o c k ”) ;

i f (USE PTHREAD)
re turn r e a l t r y l o c k (mutex) ;

p r i n t f (”TRYLOCK!\ n ”) ;
e x i t (0) ;

}

undef p t h r e a d m u t e x d e s t r o y

i n t p t h r e a d m u t e x d e s t r o y (p t h r e a d m u t e x t ∗mutex)
{

void ∗key = (void ∗) (mutex) ;
INHERIT LOCK l o c k = map del (key) ;
i n t r = 0 ;

s t a t i c i n t (∗ r e a l d e s t r o y) (p t h r e a d m u t e x t ∗) = NULL;
i f (! r e a l d e s t r o y)

r e a l d e s t r o y = dlsym (RTLD NEXT , ” p t h r e a d m u t e x d e s t r o y ”) ;

64

r = r e a l d e s t r o y (mutex) ;
i f (VERBOSE == 1)

p r i n t f (” Caught p t h r e a d m u t e x d e s t r o y ()\ n ”) ;
i f (l o c k != NULL) / / Only d e s t r o y i f i t has been i n i t i a l i s e d

d e s t r o y l o c k (& l o c k) ;
re turn r ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗CONDITION VARIABLE∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
i f d e f COND
/∗ ∗∗ ∗ /

undef p t h r e a d c o n d t i m e d w a i t

i n t p t h r e a d c o n d t i m e d w a i t (p t h r e a d c o n d t ∗cond , p t h r e a d m u t e x t ∗mutex , c o n s t s t r u c t t i m e s p e c ∗ a b s t i m e)
{

void ∗key = (void ∗) (mutex) ;
char ∗ e r r ;
s t a t i c i n t (∗ r e a l t i m e d w a i t) (p t h r e a d c o n d t ∗ , p t h r e a d m u t e x t ∗ , c o n s t s t r u c t t i m e s p e c ∗) = NULL;
i f (! r e a l t i m e d w a i t)

r e a l t i m e d w a i t = dlvsym (RTLD NEXT , ” p t h r e a d c o n d t i m e d w a i t ” , GLIBC VERSION) ;
i f (VERBOSE && (! r e a l t i m e d w a i t | | (e r r = d l e r r o r ())))

p r i n t f (” F a t a l e r r o r : dlvsym () c o u l d n o t be e x e c u t e d c o r r e c t l y !\ n ”
”\ t E r r o r message : %s\n ”
”\ t P l e a s e check t h a t you p r o v i d e d t h e c o r r e c t v e r s i o n ! ” , e r r) ;

i f (VERBOSE && key != &graphLock)
{

s t r u c t t i m e s p e c spec ;
s t r u c t t i m e s p e c d i f f ;
c l o c k g e t t i m e (CLOCK REALTIME, &spec) ;
d i f f . t v s e c = abs t ime−>t v s e c − spec . t v s e c ;
d i f f . t v n s e c = abs t ime−>t v n s e c − spec . t v n s e c ;
p r i n t f (”∗∗∗∗∗WARNING: p t h r e a d c o n d t i m e d w a i t () has been c a l l e d , t i m e o u t i n : %l d [s] ,% l d [ns]∗∗∗∗∗\n ” ,

(long) (d i f f . t v s e c) , d i f f . t v n s e c) ;
}
p r i n t f (” t i m e d w a i t \n ”) ;
re turn r e a l t i m e d w a i t (cond , mutex , a b s t i m e) ;

}

undef p t h r e a d c o n d w a i t

i n t p t h r e a d c o n d w a i t (p t h r e a d c o n d t ∗cond , p t h r e a d m u t e x t ∗mutex)
{

void ∗key = (void ∗) (mutex) ;
char ∗ e r r ;
s t a t i c i n t (∗ r e a l w a i t) (p t h r e a d c o n d t ∗ , p t h r e a d m u t e x t ∗) = NULL;
i f (! r e a l w a i t)

r e a l w a i t = dlvsym (RTLD NEXT , ” p t h r e a d c o n d w a i t ” , GLIBC VERSION) ;
i f (VERBOSE && (! r e a l w a i t | | (e r r = d l e r r o r ())))

p r i n t f (” F a t a l e r r o r : dlvsym () c o u l d n o t be e x e c u t e d c o r r e c t l y !\ n ”
”\ t E r r o r message : %s\n ”
”\ t P l e a s e check t h a t you p r o v i d e d t h e c o r r e c t v e r s i o n ! ” , e r r) ;

i f (VERBOSE && key != &graphLock)
p r i n t f (”∗∗∗∗∗WARNING: p t h r e a d c o n d w a i t () has been c a l l e d .∗∗∗∗∗\n ”) ;

re turn r e a l w a i t (cond , mutex) ;
}

undef p t h r e a d c o n d s i g n a l

i n t p t h r e a d c o n d s i g n a l (p t h r e a d c o n d t ∗cond)
{

s t a t i c i n t (∗ r e a l s i g n a l) (p t h r e a d c o n d t ∗) = NULL;
char ∗ e r r ;
i f (! r e a l s i g n a l)

r e a l s i g n a l = dlvsym (RTLD NEXT , ” p t h r e a d c o n d s i g n a l ” , GLIBC VERSION) ;
i f (VERBOSE && (! r e a l s i g n a l | | (e r r = d l e r r o r ())))

p r i n t f (” F a t a l e r r o r : dlvsym () c o u l d n o t e x e c u t e d c o r r e c t l y !\ n ”
”\ t E r r o r message : %s\n ”
”\ t P l e a s e check t h a t you p r o v i d e d t h e c o r r e c t v e r s i o n ! ” , e r r) ;

re turn r e a l s i g n a l (cond) ;

65

}

e n d i f

D.2 run.sh

! / b i n / bash

T h i s s c r i p t runs a p r e d e f i n e d t i m e s
gimp w i t h t h e s imp le−unsharp−mask
s c r i p t and compares t h e o u t p u t .

Arguments :
#1 l i b r a r y

RUNS=500

i f [−f temp . t x t] ; then
rm temp . t x t

f i

f o r i in ‘ seq 1 $RUNS ‘ ;
do

cp w i k i b a c k u p . png wik i . png
export LD PRELOAD=$1
gimp − i −b ’ (s imple−unsharp−mask ” wik i . png ” 5 . 0 0 . 5 0) ’ −b ’ (gimp−q u i t 0) ’
cmp − i 100 − l w ik i . png w i k i r e f . png | gawk ’{ p r i n t f ”%08X %02X %02X\n ” , $1 , s t r t o n u m (0 $2) , s t r t o n u m (0 $3)} ’ | wc −c >> temp . t x t

done

echo ” ”
echo ” ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ”
echo ” ”
echo ”From $RUNS”
grep ’ ˆ 0 $ ’ temp . t x t | wc − l
echo ” were s u c c e s s f u l . ”
echo ” ”
echo ” ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ”
echo ” ”

rm temp . t x t

D.3 simple-unsharp-mask.scm

(d e f i n e (simple−unsharp−mask f i l e n a m e
r a d i u s
amount
t h r e s h o l d)

(l e t ∗ ((image (c a r (g imp− f i le− load RUN−NONINTERACTIVE f i l e n a m e f i l e n a m e)))
(d r a w a b l e (c a r (gimp− image−get−act ive− layer image))))

(plug−in−unsharp−mask RUN−NONINTERACTIVE image d r a w a b l e r a d i u s amount t h r e s h o l d)
(gimp− f i le−save RUN−NONINTERACTIVE image d r a w a b l e f i l e n a m e f i l e n a m e)
(gimp− image−delete image)))

66

Glossary

busy-wait A thread waits for the occurrence of an event by repeatedly checking if the event has occurred. 4, 44

collatz conjecture Mathematical conjecture which states that any positive integer n will eventually reach 1 if it
is indefinitely applied to the rule: If even divide by 2, if odd times 3 plus 1. 32

conveyor resource Resource which lies on the path in the wait-for-graph between a process and an inherited
resource. 17, 44

critical section Section of a program which has to be executed in atomic fashion with regard to one or more
resources. 7, 24, 45

deadlock Situation in which two or more processes wait indefinitely for each other. 20, 27, 41, 45, 47

deadlock avoidance Deadlocks are avoided by keeping the system in a state that is guaranteed to be free of
deadlocks, a so called safe state. 5

deadlock detection Deadlocks might occur but can be detected with a deadlock detection algorithm. This is
usually done retrospectively, but preventive deadlock detection algorithms exist as well. 9

deadlock prevention The locking protocol makes the occurrence of deadlocks impossible. 5, 48

dining philosophers problem Famous illustration of the deadlock problem introduced by Dijkstra. 6, 40

forest Directed acyclic graph consisting of a number of components where each component is a tree. 15, 25

indegree Number of ingoing edges of a node in a directed graph. 14

linear temporal logic Modal temporal logic which allows to define conditions which are time concerned. For
example: eventually x is true and y is always true. 19

livelock A deadlock, but the affected process remains in a busy state without doing any useful work. 5, 47

outdegree Number of outgoing edges of a node in a directed graph. 14

path Sequence of edges in a graph such that each subsequent edge starts at the node where the previous edge
ended. 14

promela Verification modelling language which allows to define a concurrent process model. 19

root Source node in a tree, sink node in a transpose tree. 15, 25, 41

sink Node with no outgoing edges in a directed graph. 14, 25

source Node with no ingoing edges in a directed graph. 14

67

spin Model checker which allows to verify LTL properties in a Promela model. 19, 47

starvation A process has to wait for an unacceptable long time for a situation to occur and it is not guaranteed
that the awaited situation ever occurs. 6, 11, 12, 20, 27, 34, 44, 45, 47

transaction Sequence of read/write operations on data which should be performed in a single atomic step,
usually used in databases. 9

transactional memory Transactions in ordinary programming code (approach taken from databases), can be
implemented as software or hardware. 9, 24, 27, 31, 47

transpose tree Directed acyclic graph where each node has an outdegree of one, apart from the root node. 15

tree Directed acyclic graph where each node has an indegree of one, apart from the root node. 15, 25

wait-for graph A directed graph, consisting of process and resources, showing which resources have been allo-
cated and requested. 7, 13, 15, 20, 24, 31, 44, 48

68

	Introduction
	Motivation
	Contributions
	Outline

	Background & Related Work
	Terminology
	Related Work
	Havender's pioneer work
	Early work on deadlock avoidance
	Dining Philosophers Problem
	Deadlock properties
	Wait-For Graph
	Deadlock detection
	Locking in databases

	State of the art

	Inheritance Locks
	Origin
	Approach
	Illustrative example
	Definition using Graph Theory
	Directed Graphs
	Relation to Inheritance Locks

	SPIN Model Checking
	Model design
	Properties
	Setup
	Results

	Inheritance Lock Library
	Aims
	Design decisions
	API
	Implementation

	Benchmarks
	Micro benchmark
	Methods and design
	Results
	Discussion

	Tyche benchmark
	Methods and design
	Results
	Discussion

	Application stress test
	Implementation
	Application testing
	Design
	Results
	Conclusion

	Stress test
	Design
	Results
	Conclusion

	Discussion

	Scenarios & Limitations
	Scenarios
	Dining Philosophers with Inheritance Locks
	Bank Transaction

	Limitations
	Library usage
	Possible improvements to the library
	Condition variables in inheritance locksIn this and the following sections we return to the process and resource terminology as more generic aspects of inheritance locking are discussed
	Priority inversion

	Conclusion
	Summary
	Future Work
	Personal Reflection
	Acknowledgements

	Bibliography
	Appendices
	Scripts used for running SPIN in Computer Cluster
	login.exp
	remoteWorker.sh
	runExpect.sh
	Makefile

	Source code extracts of the library
	inheritance_lock_api.h
	acquire() Function
	release() Function

	Scripts used in the tyche benchmark test
	runO3.sh
	runExperiment.sh
	outToCsv.py
	stat.py

	Scripts and source code used in the application stress test
	pthread_interpose.c
	run.sh
	simple-unsharp-mask.scm

	Glossary

